Weierstrass–Erdmann condition

The Weierstrass–Erdmann condition is a mathematical result from the calculus of variations, which specifies sufficient conditions for broken extremals (that is, an extremal which is constrained to be smooth except at a finite number of "corners").[1]

Conditions

The Weierstrass-Erdmann corner conditions stipulate that a broken extremal of a functional satisfies the following two continuity relations at each corner :

  1. .

Applications

The condition allows one to prove that a corner exists along a given extremal. As a result, there are many applications to differential geometry. In calculations of the Weierstrass E-Function, it is often helpful to find where corners exist along the curves. Similarly, the condition allows for one to find a minimizing curve for a given integral.

gollark: Check out the improved emu war!
gollark: Andrew_The_Emu.
gollark: I don't think it actually has email set up.
gollark: I added a "legacy bounds checking" mode now.
gollark: baidicoot.

References

  1. Gelfand, I. M.; Fomin, S. V. (1963). Calculus of Variations. Englewood Cliffs, NJ: Prentice-Hall. pp. 61–63.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.