Thermophysics

Thermophysics in general is the geological application of thermal physics which is related to the classical physics study of thermal science.

Remote sensing

Earth thermophysics is a branch of geophysics that uses the naturally occurring surface temperature as a function of the cyclical variation in solar radiation to characterise planetary material properties.

Thermophysical properties are characteristics that control the diurnal, seasonal, or climatic surface and subsurface temperature variations (or thermal curves) of a material. The most important thermophysical property is thermal inertia, which controls the amplitude of the thermal curve and albedo (or reflectivity), which controls the average temperature.

This field of observations and computer modeling was first applied to Mars due to the ideal atmospheric pressure for characterising granular materials based upon temperature.[1] The Mariner 6, Mariner 7, and Mariner 9 spacecraft carried thermal infrared radiometers,[2][3] and a global map of thermal inertia was produced from modeled surface temperatures[4] collected by the Infrared Thermal Mapper Instruments (IRTM) on board the Viking 1 and 2 Orbiters.

The original thermophysical models were based upon the studies of lunar temperature variations.[5][6] Further development of the models for Mars included surface-atmosphere energy transfer,[7] atmospheric back-radiation,[2] surface emissivity variations,[3] CO2 frost and blocky surfaces,[4] variability of atmospheric back-radiation,[8] effects of a radiative-convective atmosphere,[9] and single-point temperature observations.[10][11]

References

  • Haberle, R.M.; Jakosky, B.M. (1991). "Atmospheric effects on the remote determination of thermal inertia on Mars". Icarus. 90 (2): 187–204. Bibcode:1991Icar...90..187H. doi:10.1016/0019-1035(91)90100-8.CS1 maint: ref=harv (link)
  • Hayashi, J.N.; Jakosky, B.M.; Haberle, R.M. (1995). "Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo". J. Geophys. Res. 100 (E3): 5277–5284. Bibcode:1995JGR...100.5277H. doi:10.1029/94JE02449. hdl:2060/19940031630.
  • Jaeger, J.C. (1953). "The Surface Temperature of the Moon". Aust. J. Phys. 6: 10. Bibcode:1953AuJPh...6...10J. doi:10.1071/PH530010.CS1 maint: ref=harv (link)
  • Jakosky, B.M.; Mellon, M.T.; Kieffer, H.H.; Christensen, P.R.; Varnes, E.S.; Lee, S.W. (2000). "The Thermal Inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer". J. Geophys. Res. 105 (E4): 9643–9652. Bibcode:2000JGR...105.9643J. doi:10.1029/1999JE001088.
  • Kieffer, H.H.; Chase, S.C.; Miner, E.; Munch, G.; Neugebauer, G. (1973). "Preliminary Report on Infrared Radiometric Measurements from the Mariner 9 Spacecraft". J. Geophys. Res. 78 (20): 4291–4312. Bibcode:1973JGR....78.4291K. doi:10.1029/JB078i020p04291.
  • Kieffer, H.H.; Martin, T.Z.; Peterfreund, A.R.; Jakosky, B.M.; Miner, E.D.; Palluconi, F.D. (1977). "Thermal and Albedo Mapping of Mars During the Viking Primary Mission". J. Geophys. Res. 82 (28): 4249–4290. Bibcode:1977JGR....82.4249K. doi:10.1029/JS082i028p04249.
  • Leovy, C. (1966). "Note on the thermal properties of Mars". Icarus. 5 (1–6): 1–6. Bibcode:1966Icar....5....1L. doi:10.1016/0019-1035(66)90002-9. hdl:2060/19650016474.CS1 maint: ref=harv (link)
  • Mellon, M.T; Jakosky, B.M.; Kieffer, H.H.; Christensen, P.R. (2000). "High Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer". Icarus. 148 (2): 437–455. Bibcode:2000Icar..148..437M. doi:10.1006/icar.2000.6503.
  • Neugebauer, G.; Munch, G.; Kieffer, H.H.; Chase, S.C.; Miner, E. (1971). "Mariner 1969 Infrared Radiometer Results: Temperatures and Thermal Properties of the Martian Surface". Astron. J. 76: 719. Bibcode:1971AJ.....76..719N. doi:10.1086/111189.
  • Wechsler, A.E.; Glaser, P.E. (1965). "Pressure Effects on Postulated Lunar Materials". Icarus. 4 (4): 335. Bibcode:1965Icar....4..335W. doi:10.1016/0019-1035(65)90038-2.CS1 maint: ref=harv (link)
  • Wesselink, A.J. (1948). "Heat conductivity and nature of the lunar surface material". Bull. Astron. Inst. Neth. 10: 351–363. Bibcode:1948BAN....10..351W.CS1 maint: ref=harv (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.