de Bruijn–Newman constant

The De Bruijn–Newman constant, denoted by Λ and named after Nicolaas Govert de Bruijn and Charles M. Newman, is a mathematical constant defined via the zeros of a certain function H(λ, z), where λ is a real parameter and z is a complex variable. More precisely,

,

where is the super-exponentially decaying function

,

and Λ is the unique real number with the property that H has only real zeros if and only if λ  Λ.

The constant is closely connected with Riemann's hypothesis concerning the zeros of the Riemann zeta-function: since the Riemann hypothesis is equivalent to the claim that all the zeroes of H(0, z) are real, the Riemann hypothesis is equivalent to the conjecture that Λ  0.[1] Brad Rodgers and Terence Tao proved that Λ < 0 can not be true, so Riemann's hypothesis is equivalent to Λ = 0.[2]

History

De Bruijn showed in 1950 that H has only real zeros if λ  1/2, and moreover, that if H has only real zeros for some λ, H also has only real zeros if λ is replaced by any larger value.[3] Newman proved in 1976 the existence of a constant Λ for which the "if and only if" claim holds; and this then implies that Λ is unique. Newman also conjectured that Λ  0.[4]

Upper bounds

De Bruijn's upper bound of was not improved until 2008, when Ki, Kim and Lee proved , making the inequality strict.[5]

In December 2018, the 15th Polymath project improved the bound to ,[6][7][8]. A manuscript of the Polymath work was submitted to arXiv in late April 2019,[9] and was published in the journal Research In the Mathematical Sciences in August 2019.[10]

This bound was further slightly improved in April 2020 by Platt and Trudgian to .[11]

Historical lower bounds

YearLower bound on Λ
198750[12]
19905[13]
19920.385[14]
1991 0.0991[15]
19935.895×109[16]
19944.379×106[17]
20002.7×109[18]
20111.1×1011[19]
20180[2]

References

  1. "The De Bruijn-Newman constant is non-negative". Retrieved 2018-01-19. (announcement post)
  2. Rodgers, Brad; Tao, Terence (2020). "The de Bruijn–Newman Constant is Non-Negative". Forum of Mathematics, Pi. 8: e6. doi:10.1017/fmp.2020.6. ISSN 2050-5086.
  3. de Bruijn, N.G. (1950). "The Roots of Triginometric Integrals" (PDF). Duke Math. J. 17 (3): 197–226. doi:10.1215/s0012-7094-50-01720-0. Zbl 0038.23302.
  4. Newman, C.M. (1976). "Fourier Transforms with only Real Zeros". Proc. Amer. Math. Soc. 61 (2): 245–251. doi:10.1090/s0002-9939-1976-0434982-5. Zbl 0342.42007.
  5. Haseo Ki and Young-One Kim and Jungseob Lee (2009), "On the de Bruijn–Newman constant" (PDF), Advances in Mathematics, 222 (1): 281–306, doi:10.1016/j.aim.2009.04.003, ISSN 0001-8708, MR 2531375 (discussion).
  6. D.H.J. Polymath (20 December 2018), Effective approximation of heat flow evolution of the Riemann -function, and an upper bound for the de Bruijn-Newman constant (PDF) (preprint), retrieved 23 December 2018
  7. Going below
  8. Zero-free regions
  9. Polymath, D.H.J. (2019). "Effective approximation of heat flow evolution of the Riemann ξ function, and a new upper bound for the de Bruijn-Newman constant". arXiv:1904.12438 [math.NT].(preprint)
  10. Polymath, D.H.J. (2019), "Effective approximation of heat flow evolution of the Riemann ξ function, and a new upper bound for the de Bruijn-Newman constant", Research in the Mathematical Sciences, 6 (3), arXiv:1904.12438, Bibcode:2019arXiv190412438P, doi:10.1007/s40687-019-0193-1
  11. Platt, Dave; Trudgian, Tim (2020). "The Riemann hypothesis is true up to ". arXiv:2004.09765 [math.NT].(preprint)
  12. Csordas, G.; Norfolk, T. S.; Varga, R. S. (1987-09-01). "A low bound for the de Bruijn-newman constant Λ". Numerische Mathematik. 52 (5): 483–497. doi:10.1007/BF01400887. ISSN 0945-3245.
  13. te Riele, H. J. J. (1990-12-01). "A new lower bound for the de Bruijn-Newman constant". Numerische Mathematik. 58 (1): 661–667. doi:10.1007/BF01385647. ISSN 0945-3245.
  14. Norfolk, T. S.; Ruttan, A.; Varga, R. S. (1992). Gonchar, A. A.; Saff, E. B. (eds.). "A Lower Bound for the de Bruijn-Newman Constant Λ. II". Progress in Approximation Theory. Springer Series in Computational Mathematics. New York, NY: Springer: 403–418. doi:10.1007/978-1-4612-2966-7_17. ISBN 978-1-4612-2966-7.
  15. Csordas, G.; Ruttan, A.; Varga, R. S. (1991-06-01). "The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis". Numerical Algorithms. 1 (2): 305–329. doi:10.1007/BF02142328. ISSN 1572-9265.
  16. Csordas, G.; Odlyzko, A.M.; Smith, W.; Varga, R.S. (1993). "A new Lehmer pair of zeros and a new lower bound for the De Bruijn–Newman constant Lambda" (PDF). Electronic Transactions on Numerical Analysis. 1: 104–111. Zbl 0807.11059. Retrieved June 1, 2012.
  17. Csordas, George; Smith, Wayne; Varga, Richard S. (1994-03-01). "Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann Hypothesis". Constructive Approximation. 10 (1): 107–129. doi:10.1007/BF01205170. ISSN 1432-0940.
  18. Odlyzko, A.M. (2000). "An improved bound for the de Bruijn–Newman constant". Numerical Algorithms. 25 (1): 293–303. Bibcode:2000NuAlg..25..293O. doi:10.1023/A:1016677511798. Zbl 0967.11034.
  19. Saouter, Yannick; Gourdon, Xavier; Demichel, Patrick (2011). "An improved lower bound for the de Bruijn–Newman constant". Mathematics of Computation. 80 (276): 2281–2287. doi:10.1090/S0025-5718-2011-02472-5. MR 2813360.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.