Allomone

An allomone (from Ancient Greek ἄλλος allos "other" and pheromone) is any chemical substance produced and released by an individual of one species that affects the behaviour of a member of another species to the benefit of the originator but not the receiver.[1] Production of allomones is a common form of defence, particularly by plant species against insect herbivores.

Dasyscolia ciliata

Many insects have developed ways to defend against these plant defenses (in an evolutionary arms race). One method of adapting to allomones is to develop a positive reaction to them; the allomone then becomes a kairomone. Others alter the allomones to form pheromones or other hormones, and yet others adopt them into their own defensive strategies, for example by regurgitating them when attacked by an insectivorous insect.

A third class of allelochemical (chemical used in interspecific communication), synomones, benefit both the sender and receiver.[1]

"Allomone was proposed by Brown and Eisner (Brown, 1968) to denote those substances which convey an advantage upon the emitter. Because Brown and Eisner did not specify whether or not the receiver would benefit, the original definition of allomone includes both substances that benefit the receiver and the emitter, and substances that only benefit the emitter. An example of the first relationship would be a mutualistic relationship, and the latter would be a repellent secretion."[2]

Examples

Disrupt growth and development and reduce longevity of adults e.g. toxins or digestibility reducing factors.

  • Antixenotics

Disrupt normal host selection behaviour e.g. Repellents, suppressants, locomotory excitants.

Plants producing allomones

Insects producing allomones

  • The larvae of the berothid lacewing Lomamyia latipennis feed on termites which they subdue with an aggressive allomone. The first instar approaches a termite and waves the tip of its abdomen near the termite's head. The termite becomes immobile after 1 to 3 minutes, and completely paralysed very soon after this, although it may live for up to 3 hours. The berothid then feeds on the paralysed prey. The third instar feeds in a similar manner and may kill up to six termites at a time. Contact between the termite and the berothid is not necessary for subduing, and other insects present are not affected by the allomone.[3]
gollark: See, there are lots of ways I could do it: - the way dokuwiki handles search, where there's a box in the navbar and when you hit enter it navigates to a new page with the results (somewhat slower to interact with, but simple and allows a lot of information with each result)- clientside JS implementing a search overlay/modal so that the results update immediately as you type, except this is kind of not that useful as SQLite full text search is not very fuzzy- a combination of these approaches, where you have a live JS-based fuzzy search thing for page *titles* and the dokuwiki-style thing for most searches
gollark: No.
gollark: Right now it's just this and there is no search box anywhere.
gollark: As in, how to make the UI work nicely.
gollark: So I have a backend extant for the search. But I don't know how to nicely integrate it in the application neatly.

See also

References

  1. Grasswitz, T.R. and G.R. Jones (2002). "Chemical Ecology". Encyclopedia of Life Sciences. John Wiley & Sons, Ltd. doi:10.1038/npg.els.0001716.
  2. Weldon, Paul J. Journal of Chemical Ecology. p. 719. doi:10.1007/BF00987681.
  3. Insects as Predators by T New, published by NSW University Press in 1991


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.