Weyl−Lewis−Papapetrou coordinates

In general relativity, the Weyl−Lewis−Papapetrou coordinates are a set of coordinates, used in the solutions to the vacuum region surrounding an axisymmetric distribution of mass–energy. They are named for Hermann Weyl, Thomas Lewis, and Achilles Papapetrou.[1][2][3]

Details

The square of the line element is of the form:[4]

where (t, ρ, ϕ, z) are the cylindrical Weyl−Lewis−Papapetrou coordinates in 3 + 1 spacetime, and λ, ν, ω, and B, are unknown functions of the spatial non-angular coordinates ρ and z only. Different authors define the functions of the coordinates differently.

gollark: Want to know whether you should buy a new computer or wait until new things are out? Also thermodynamics.
gollark: Want to know the effects of minimum wage increases on employment? Thermodynamics.
gollark: Thermodynamics is applicable to all situations, so it makes sense, actually.
gollark: Ah, but sometimes you believe wrong things.
gollark: You should be correct, and assume that either of you might be wrong.

See also

References

  1. Weyl, H. (1917). "Zur Gravitationstheorie". Ann. der Physik. 54: 117–145. doi:10.1002/andp.19173591804.
  2. Lewis, T. (1932). "Some special solutions of the equations of axially symmetric gravitational fields". Roy. Soc., Proc. 136: 176–92. doi:10.1098/rspa.1932.0073.
  3. Papapetrou, A. (1948). "A static solution of the equations of the gravitatinal field for an arbitrary charge-distribution". Proc. R. Irish Acad. A. 52: 11. JSTOR 20488481.
  4. Jiří Bičák; O. Semerák; Jiří Podolský; Martin Žofka (2002). Gravitation, Following the Prague Inspiration: A Volume in Celebration of the 60th Birthday of Jiří Bičák. World Scientific. p. 122. ISBN 981-238-093-0.

Further reading

Selected papers

Selected books


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.