Wallis product

In mathematics, the Wallis product for π, published in 1656 by John Wallis,[1] states that

Comparison of the convergence of the Wallis product (purple asterisks) and several historical infinite series for π. Sn is the approximation after taking n terms. Each subsequent subplot magnifies the shaded area horizontally by 10 times. (click for detail)

Proof using integration

Wallis derived this infinite product as it is done in calculus books today, by examining for even and odd values of , and noting that for large , increasing by 1 results in a change that becomes ever smaller as increases. Let[2]

(This is a form of Wallis' integrals.) Integrate by parts:

This result will be used below:

Repeating the process,

Repeating the process,

, from above results.

By the squeeze theorem,

Proof using Euler's infinite product for the sine function

While the proof above is typically featured in modern calculus textbooks, the Wallis product is, in retrospect, an easy corollary of the later Euler infinite product for the sine function.

Let :

[1]

Relation to Stirling's approximation

Stirling's approximation for the factorial function asserts that

Consider now the finite approximations to the Wallis product, obtained by taking the first terms in the product

where can be written as

Substituting Stirling's approximation in this expression (both for and ) one can deduce (after a short calculation) that converges to as .

Derivative of the Riemann zeta function at zero

The Riemann zeta function and the Dirichlet eta function can be defined:[1]

Applying an Euler transform to the latter series, the following is obtained:

gollark: Because they are not stupid. Mostly.
gollark: Yes, but nobody uses that on wireless networks.
gollark: *RCEoR
gollark: It was secure, though - code to run had an `evil` flag - if it was set to `true` it would not be run.
gollark: Well, yes, if they ran the RCEoR client.

See also

Notes

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.