Vanillic acid

Vanillic acid (4-hydroxy-3-methoxybenzoic acid) is a dihydroxybenzoic acid derivative used as a flavoring agent. It is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid.[2][3]

Vanillic acid[1]
Skeletal formula of vanillic acid
Ball-and-stick model of the vanillic acid molecule
Names
IUPAC name
4-Hydroxy-3-methoxybenzoic acid
Other names
4-Hydroxy-m-anisic acid, Vanillate
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.004.061
UNII
Properties
C8H8O4
Molar mass 168.148 g·mol−1
Appearance White to light yellow powder or crystals
Melting point 210 to 213 °C (410 to 415 °F; 483 to 486 K)
Hazards
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
0
1
0
Related compounds
Related compounds
Vanillin, vanillyl alcohol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

Occurrence in nature

The highest amount of vanillic acid in plants known so far is found in the root of Angelica sinensis,[4] an herb indigenous to China, which is used in traditional Chinese medicine.

Occurrences in food

Açaí oil, obtained from the fruit of the açaí palm (Euterpe oleracea), is rich in vanillic acid (1616±94 mg/kg).[5] It is one of the main natural phenols in argan oil. It is also found in wine and vinegar.[6]

Metabolism

Vanillic acid is one of the main catechins metabolites found in humans after consumption of green tea infusions.[7]

Synthesis

Oxidation of vanillin to the carboxylic acid occurred in ~88% yield.[8]

Uses

Vanillic acid is used in the synthesis of:

  1. the analeptic drug etamivan.[9]
  2. Modecainide
  3. Vanillic acid is acetylated and converted to its acid chloride; S.B. amidation with bromhexine gives Brovanexine.[10]
  4. Vanitiolide
  5. Vanyldisulfamide (need synthesis still).
gollark: Do you agree?
gollark: I'd like to propose the Bees Theorem: any application's bloat can be increased by appending "bees" in a comment to the end of its source code.
gollark: Interesting!
gollark: Idea: make a language which is maximally bloated according to Nobody.
gollark: Hmm, we should probably procedurally generate them somehow.

References

  1. "Vanillic acid (4-hydroxy-3-methoxybenzoic acid)". chemicalland21.com. Retrieved 2009-01-28.
  2. Lesage-Meessen L, Delattre M, Haon M, Thibault JF, Ceccaldi BC, Brunerie P, Asther M (October 1996). "A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus". J. Biotechnol. 50 (2–3): 107–113. doi:10.1016/0168-1656(96)01552-0. PMID 8987621.
  3. Civolani C, Barghini P, Roncetti AR, Ruzzi M, Schiesser A (June 2000). "Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of Pseudomonas fluorescens strain BF13". Appl. Environ. Microbiol. 66 (6): 2311–2317. doi:10.1128/AEM.66.6.2311-2317.2000. PMC 110519. PMID 10831404.
  4. Duke, JA (1992). Handbook of phytochemical constituents of GRAS herbs and other economic plants. CRC Press, 999 edition. ISBN 978-0-8493-3865-6. Archived from the original on 2015-09-23. Retrieved 2012-01-07.
  5. Pacheco-Palencia LA, Mertens-Talcott S, Talcott ST (Jun 2008). "Chemical composition, antioxidant properties, and thermal stability of a phytochemical enriched oil from Açaí (Euterpe oleracea Mart.)". J Agric Food Chem. 56 (12): 4631–4636. doi:10.1021/jf800161u. PMID 18522407.
  6. Gálvez, Miguel Carrero; Barroso, Carmelo García; Pérez-Bustamante, Juan Antonio (1994). "Analysis of polyphenolic compounds of different vinegar samples". Zeitschrift für Lebensmittel-Untersuchung und -Forschung. 199: 29–31. doi:10.1007/BF01192948.
  7. Pietta, P. G.; Simonetti, P.; Gardana, C.; Brusamolino, A.; Morazzoni, P.; Bombardelli, E. (1998). "Catechin metabolites after intake of green tea infusions". BioFactors. 8 (1–2): 111–8. doi:10.1002/biof.5520080119. PMID 9699018.
  8. Lim M, Yoon CM, An G, Rhee H (2007). Tetrahedron Lett. 48 (22): 3835–3839. Missing or empty |title= (help)
  9. Kvasnicka Erich, Kratzl Karl U.S. Patent 2,641,612 (1952 to Chemie Linz AG).
  10. GB1432904A
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.