Van der Corput's method

In mathematics, van der Corput's method generates estimates for exponential sums. The method applies two processes, the van der Corput processes A and B which relate the sums into simpler sums which are easier to estimate.

The processes apply to exponential sums of the form

where f is a sufficiently smooth function and e(x) denotes exp(2πix).

Process A

To apply process A, write the first difference fh(x) for f(x+h)−f(x).

Assume there is Hba such that

Then

Process B

Process B transforms the sum involving f into one involving a function g defined in terms of the derivative of f. Suppose that f' is monotone increasing with f'(a) = α, f'(b) = β. Then f' is invertible on [α,β] with inverse u say. Further suppose f'' ≥ λ > 0. Write

We have

Applying Process B again to the sum involving g returns to the sum over f and so yields no further information.

Exponent pairs

The method of exponent pairs gives a class of estimates for functions with a particular smoothness property. Fix parameters N,R,T,s,δ. We consider functions f defined on an interval [N,2N] which are R times continuously differentiable, satisfying

uniformly on [a,b] for 0 ≤ r < R.

We say that a pair of real numbers (k,l) with 0 ≤ k ≤ 1/2 ≤ l ≤ 1 is an exponent pair if for each σ > 0 there exists δ and R depending on k,l,σ such that

uniformly in f.

By Process A we find that if (k,l) is an exponent pair then so is . By Process B we find that so is .

A trivial bound shows that (0,1) is an exponent pair.

The set of exponents pairs is convex.

It is known that if (k,l) is an exponent pair then the Riemann zeta function on the critical line satisfies

where .

The exponent pair conjecture states that for all ε > 0, the pair (ε,1/2+ε) is an exponent pair. This conjecture implies the Lindelöf hypothesis.

gollark: Oh, wait, this is sensibly slowly because it can only read at 200MB/s or so.
gollark: Hmm. This integrity check on my backups is going worryingly slowly.
gollark: osmarkscalculator™ still can't do that, sadly.
gollark: Oh dear. There appear to be problems.
gollark: Anyway, you can do NAT64 or whichever way it is, if you're bad.

References

  • Ivić, Aleksandar (1985). The Riemann zeta-function. The theory of the Riemann zeta-function with applications. New York etc.: John Wiley & Sons. ISBN 0-471-80634-X. Zbl 0556.10026.
  • Montgomery, Hugh L. (1994). Ten lectures on the interface between analytic number theory and harmonic analysis. Regional Conference Series in Mathematics. 84. Providence, RI: American Mathematical Society. ISBN 0-8218-0737-4. Zbl 0814.11001.
  • Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, eds. (2006). Handbook of number theory I. Dordrecht: Springer-Verlag. ISBN 1-4020-4215-9. Zbl 1151.11300.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.