Upper-convected time derivative

In continuum mechanics, including fluid dynamics, an upper-convected time derivative or Oldroyd derivative, named after James G. Oldroyd, is the rate of change of some tensor property of a small parcel of fluid that is written in the coordinate system rotating and stretching with the fluid.

The operator is specified by the following formula:

where:

  • is the upper-convected time derivative of a tensor field
  • is the substantive derivative
  • is the tensor of velocity derivatives for the fluid.

The formula can be rewritten as:

By definition the upper-convected time derivative of the Finger tensor is always zero.

It can be shown that the upper-convected time derivative of a spacelike vector field is just its Lie derivative by the velocity field of the continuum.[1]

The upper-convected derivative is widely use in polymer rheology for the description of behavior of a viscoelastic fluid under large deformations.

Examples for the symmetric tensor A

Simple shear

For the case of simple shear:

Thus,

Uniaxial extension of incompressible fluid

In this case a material is stretched in the direction X and compresses in the directions Y and Z, so to keep volume constant. The gradients of velocity are:

Thus,

gollark: Why would we rectify bees?
gollark: Antidisestablishmentarianism Band Reification.
gollark: Only because ABR isn't here.
gollark: ++delete <@151391317740486657>
gollark: Wrong.

See also

References

  • Macosko, Christopher (1993). Rheology. Principles, Measurements and Applications. VCH Publisher. ISBN 978-1-56081-579-2.
Notes
  1. Matolcsi, Tamás; Ván, Péter (2008). "On the Objectivity of Time Derivatives". doi:10.1478/C1S0801015. Cite journal requires |journal= (help)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.