Universally Baire set
In the mathematical field of descriptive set theory, a set of real numbers (or more generally a subset of the Baire space or Cantor space) is called universally Baire if it has a certain strong regularity property. Universally Baire sets play an important role in Ω-logic, a very strong logical system invented by W. Hugh Woodin and the centerpiece of his argument against the continuum hypothesis of Georg Cantor.
Definition
A subset A of the Baire space is universally Baire if it has the following equivalent properties:
- For every notion of forcing, there are trees T and U such that A is the projection of the set of all branches through T, and it is forced that the projections of the branches through T and the branches through U are complements of each other.
- For every compact Hausdorff space Ω, and every continuous function f from Ω to the Baire space, the preimage of A under f has the property of Baire in Ω.
- For every cardinal λ and every continuous function f from λω to the Baire space, the preimage of A under f has the property of Baire.
gollark: I don't. I am generally very against stuff like this which takes control of technology away from users.
gollark: As well as the other reasons, like their ability to smell fear and refuse to print.
gollark: This is why printers CANNOT be trusted.
gollark: https://en.wikipedia.org/wiki/Printer_steganography
gollark: Although there is also that thing where they secretly embed metadata into documents using very small dots or something.
References
- Bagaria, Joan; Todorcevic, Stevo (eds.). Set Theory: Centre de Recerca Matemàtica Barcelona, 2003-2004. Trends in Mathematics. ISBN 978-3-7643-7691-8.
- Feng, Qi; Magidor, Menachem; Woodin, Hugh. Judah, H.; Just, W.; Woodin, Hugh (eds.). Set Theory of the Continuum. Mathematical Sciences Research Institute Publications.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.