Uniform matroid

In mathematics, a uniform matroid is a matroid in which the independent sets are exactly the sets containing at most r elements, for some fixed integer r. An alternative definition is that every permutation of the elements is a symmetry.

Definition

The uniform matroid is defined over a set of elements. A subset of the elements is independent if and only if it contains at most elements. A subset is a basis if it has exactly elements, and it is a circuit if it has exactly elements. The rank of a subset is and the rank of the matroid is .[1][2]

A matroid of rank is uniform if and only if all of its circuits have exactly elements.[3]

The matroid is called the -point line.

Duality and minors

The dual matroid of the uniform matroid is another uniform matroid . A uniform matroid is self-dual if and only if .[4]

Every minor of a uniform matroid is uniform. Restricting a uniform matroid by one element (as long as ) produces the matroid and contracting it by one element (as long as ) produces the matroid .[5]

Realization

The uniform matroid may be represented as the matroid of affinely independent subsets of points in general position in -dimensional Euclidean space, or as the matroid of linearly independent subsets of vectors in general position in an -dimensional real vector space.

Every uniform matroid may also be realized in projective spaces and vector spaces over all sufficiently large finite fields.[6] However, the field must be large enough to include enough independent vectors. For instance, the -point line can be realized only over finite fields of or more elements (because otherwise the projective line over that field would have fewer than points): is not a binary matroid, is not a ternary matroid, etc. For this reason, uniform matroids play an important role in Rota's conjecture concerning the forbidden minor characterization of the matroids that can be realized over finite fields.[7]

Algorithms

The problem of finding the minimum-weight basis of a weighted uniform matroid is well-studied in computer science as the selection problem. It may be solved in linear time.[8]

Any algorithm that tests whether a given matroid is uniform, given access to the matroid via an independence oracle, must perform an exponential number of oracle queries, and therefore cannot take polynomial time.[9]

Unless , a uniform matroid is connected: it is not the direct sum of two smaller matroids.[10] The direct sum of a family of uniform matroids (not necessarily all with the same parameters) is called a partition matroid.

Every uniform matroid is a paving matroid,[11] a transversal matroid[12] and a strict gammoid.[6]

Not every uniform matroid is graphic, and the uniform matroids provide the smallest example of a non-graphic matroid, . The uniform matroid is the graphic matroid of an -edge dipole graph, and the dual uniform matroid is the graphic matroid of its dual graph, the -edge cycle graph. is the graphic matroid of a graph with self-loops, and is the graphic matroid of an -edge forest. Other than these examples, every uniform matroid with contains as a minor and therefore is not graphic.[13]

The -point line provides an example of a Sylvester matroid, a matroid in which every line contains three or more points.[14]

gollark: osmarks.tk™ autorandom™?
gollark: Fine. I will make a new proposal maybe.
gollark: The rules mention NOTHING about quality RNGs.
gollark: I am entirely fine with people using a not-really-random number generator, or hand-picking words from a random set.
gollark: We are using my definition of cool, which is of course objectively true.

See also

References

  1. Oxley, James G. (2006), "Example 1.2.7", Matroid Theory, Oxford Graduate Texts in Mathematics, 3, Oxford University Press, p. 19, ISBN 9780199202508. For the rank function, see p. 26.
  2. Welsh, D. J. A. (2010), Matroid Theory, Courier Dover Publications, p. 10, ISBN 9780486474397.
  3. Oxley (2006), p. 27.
  4. Oxley (2006), pp. 77 & 111.
  5. Oxley (2006), pp. 106–107 & 111.
  6. Oxley (2006), p. 100.
  7. Oxley (2006), pp. 202–206.
  8. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001), "Chapter 9: Medians and Order Statistics", Introduction to Algorithms (2nd ed.), MIT Press and McGraw-Hill, pp. 183–196, ISBN 0-262-03293-7.
  9. Jensen, Per M.; Korte, Bernhard (1982), "Complexity of matroid property algorithms", SIAM Journal on Computing, 11 (1): 184–190, doi:10.1137/0211014, MR 0646772.
  10. Oxley (2006), p. 126.
  11. Oxley (2006, p. 26).
  12. Oxley (2006), pp. 48–49.
  13. Welsh (2010), p. 30.
  14. Welsh (2010), p. 297.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.