Turán's method

In mathematics, Turán's method provides lower bounds for exponential sums and complex power sums. The method has been applied to problems in equidistribution.

The method applies to sums of the form

where the b and z are complex numbers and ν runs over a range of integers. There are two main results, depending on the size of the complex numbers z.

Turán's first theorem

The first result applies to sums sν where for all n. For any range of ν of length N, say ν = M + 1, ..., M + N, there is some ν with |sν| at least c(M, N)|s0| where

The sum here may be replaced by the weaker but simpler .

We may deduce the Fabry gap theorem from this result.

Turán's second theorem

The second result applies to sums sν where for all n. Assume that the z are ordered in decreasing absolute value and scaled so that |z1| = 1. Then there is some ν with

gollark: Pro-glaßes propaganda!
gollark: Oh, but glasses magically stop it getting worse? Suuuure.
gollark: Well I can, so no.
gollark: Is it though? Is it REALLY?
gollark: I got some number, but then I forgot it.

See also

References

  • Montgomery, Hugh L. (1994). Ten lectures on the interface between analytic number theory and harmonic analysis. Regional Conference Series in Mathematics. 84. Providence, RI: American Mathematical Society. ISBN 0-8218-0737-4. Zbl 0814.11001.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.