Trinomial expansion

In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by

where n is a nonnegative integer and the sum is taken over all combinations of nonnegative indices i, j, and k such that i + j + k = n.[1] The trinomial coefficients are given by

This formula is a special case of the multinomial formula for m = 3. The coefficients can be defined with a generalization of Pascal's triangle to three dimensions, called Pascal's pyramid or Pascal's tetrahedron.[2]

Properties

The number of terms of an expanded trinomial is the triangular number

where n is the exponent to which the trinomial is raised.[3]

Example

An example of a trinomial expansion with is :

gollark: Maybe they finally fixed that redesign redirection bug, who knows.
gollark: I'm in the UK, and got 503 errors a lot earlier, plus generally slow loading.
gollark: Yes, it has.
gollark: Madness.
gollark: They probably wrote them down.

See also

References

  1. Koshy, Thomas (2004), Discrete Mathematics with Applications, Academic Press, p. 889, ISBN 9780080477343.
  2. Harris, John; Hirst, Jeffry L.; Mossinghoff, Michael (2009), Combinatorics and Graph Theory, Undergraduate Texts in Mathematics (2nd ed.), Springer, p. 146, ISBN 9780387797113.
  3. Rosenthal, E. R. (1961), "A Pascal pyramid for trinomial coefficients", The Mathematics Teacher, 54 (5): 336–338.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.