Toral subalgebra

In mathematics, a toral subalgebra is a Lie subalgebra of a general linear Lie algebra all of whose elements are semisimple (or diagonalizable over an algebraically closed field).[1] Equivalently, a Lie algebra is toral if it contains no nonzero nilpotent elements. Over an algebraically closed field, every toral Lie algebra is abelian;[1] thus, its elements are simultaneously diagonalizable.

In semisimple and reductive Lie algebras

A subalgebra of a semisimple Lie algebra is called toral if the adjoint representation of on , is a toral subalgebra. A maximal toral Lie subalgebra of a finite-dimensional semisimple Lie algebra, or more generally of a finite-dimensional reductive Lie algebra, over an algebraically closed field of characteristic 0 is a Cartan subalgebra and vice versa.[2] In particular, a maximal toral Lie subalgebra in this setting is self-normalizing, coincides with its centralizer, and the Killing form of restricted to is nondegenerate.

For more general Lie algebras, a Cartan algebra may differ from a maximal toral algebra.

In a finite-dimensional semisimple Lie algebra over an algebraically closed field of a characteristic zero, a toral subalgebra exists.[1] In fact, if has only nilpotent elements, then it is nilpotent (Engel's theorem), but then its Killing form is identically zero, contradicting semisimplicity. Hence, must have a nonzero semisimple element, say x; the linear span of x is then a toral subalgebra.

gollark: ÆÆÆÆÆÆÆ
gollark: ```checking dependency style of gcc... (cached) gcc3./configure: line 8685: syntax error near unexpected token `-std=c11,'./configure: line 8685: `AX_CHECK_COMPILE_FLAG(-std=c11, CFLAGS+=" -std=c11" ,'```
gollark: = 2.718ish.
gollark: `Possibly` and `A`/`No`.
gollark: How should I know?

See also

References

  1. Humphreys, Ch. II, § 8.1.
  2. Humphreys, Ch. IV, § 15.3. Corollary
  • Borel, Armand (1991), Linear algebraic groups, Graduate Texts in Mathematics, 126 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-97370-8, MR 1102012
  • Humphreys, James E. (1972), Introduction to Lie Algebras and Representation Theory, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90053-7
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.