Topological geometry
Topological geometry deals with incidence structures consisting of a point set and a family of subsets of called lines or circles etc. such that both and carry a topology and all geometric operations like joining points by a line or intersecting lines are continuous. As in the case of topological groups, many deeper results require the point space to be (locally) compact and connected. This generalizes the observation that the line joining two distinct points in the Euclidean plane depends continuously on the pair of points and the intersection point of two lines is a continuous function of these lines.
Linear geometries
Linear geometries are incidence structures in which any two distinct points and are joined by a unique line . Such geometries are called topological if depends continuously on the pair with respect to given topologies on the point set and the line set. The dual of a linear geometry is obtained by interchanging the rôles of points and lines. A survey of linear topological geometries is given in Chapter 23 of the Handbook of incidence geometry.[1] The most extensively investigated topological linear geometries are those which are also dual topological linear geometries. Such geometries are known as topological projective planes.
History
A systematic study of these planes began in 1954 with a paper by Skornyakov.[2] Earlier, the topological properties of the real plane had been introduced via ordering relations on the affine lines, see, e.g., Hilbert,[3] Coxeter,[4] and O. Wyler.[5] The completeness of the ordering is equivalent to local compactness and implies that the affine lines are homeomorphic to and that the point space is connected. Note that the rational numbers do not suffice to describe our intuitive notions of plane geometry and that some extension of the rational field is necessary. In fact, the equation for a circle has no rational solution.
Topological projective planes
The approach to the topological properties of projective planes via ordering relations is not possible, however, for the planes coordinatized by the complex numbers, the quaternions or the octonion algebra.[6] The point spaces as well as the line spaces of these classical planes (over the real numbers, the complex numbers, the quaternions, and the octonions) are compact manifolds of dimension .
Topological dimension
The notion of the dimension of a topological space plays a prominent rôle in the study of topological, in particular of compact connected planes. For a normal space , the dimension can be characterized as follows:
If denotes the -sphere, then if, and only if, for every closed subspace each continuous map has a continuous extension .
For details and other definitions of a dimension see [7] and the references given there, in particular Engelking[8] or Fedorchuk.[9]
2-dimensional planes
The lines of a compact topological plane with a 2-dimensional point space form a family of curves homeomorphic to a circle, and this fact characterizes these planes among the topological projective planes.[10] Equivalently, the point space is a surface. Early examples not isomorphic to the classical real plane have been given by Hilbert[3][11] and Moulton.[12] The continuity properties of these examples have not been considered explicitly at that time, they may have been taken for granted. Hilbert’s construction can be modified to obtain uncountably many pairwise non-isomorphic -dimensional compact planes. The traditional way to distinguish from the other -dimensional planes is by the validity of Desargues’s theorem or the theorem of Pappos (see, e.g., Pickert[13] for a discussion of these two configuration theorems). The latter is known to imply the former (Hessenberg[14]). The theorem of Desargues expresses a kind of homogeneity of the plane. In general, it holds in a projective plane if, and only if, the plane can be coordinatized by a (not necessarily commutative) field,[3][15][13] hence it implies that the group of automorphisms is transitive on the set of quadrangles ( points no of which are collinear). In the present setting, a much weaker homogeneity condition characterizes :
Theorem. If the automorphism group of a -dimensional compact plane is transitive on the point set (or the line set), then has a compact subgroup which is even transitive on the set of flags (=incident point-line pairs), and is classical.[10]
The automorphism group of a -dimensional compact plane , taken with the topology of uniform convergence on the point space, is a locally compact group of dimension at most , in fact even a Lie group. All -dimensional planes such that can be described explicitly;[10] those with are exactly the Moulton planes, the classical plane is the only -dimensional plane with ; see also.[16]
Compact connected planes
The results on -dimensional planes have been extended to compact planes of dimension . This is possible due to the following basic theorem:
Topology of compact planes. If the dimension of the point space of a compact connected projective plane is finite, then with . Moreover, each line is a homotopy sphere of dimension , see [17] or.[18]
Special aspects of 4-dimensional planes are treated in,[19] more recent results can be found in.[20] The lines of a -dimensional compact plane are homeomorphic to the -sphere;[21] in the cases the lines are not known to be manifolds, but in all examples which have been found so far the lines are spheres. A subplane of a projective plane is said to be a Baer subplane,[22] if each point of is incident with a line of and each line of contains a point of . A closed subplane is a Baer subplane of a compact connected plane if, and only if, the point space of and a line of have the same dimension. Hence the lines of an 8-dimensional plane are homeomorphic to a sphere if has a closed Baer subplane.[23]
Homogeneous planes. If is a compact connected projective plane and if is transitive on the point set of , then has a flag-transitive compact subgroup and is classical, see [24] or.[25] In fact, is an elliptic motion group.[26]
Let be a compact plane of dimension , and write . If , then is classical,[27] and is a simple Lie group of dimension respectively. All planes with are known explicitly.[28] The planes with are exactly the projective closures of the affine planes coordinatized by a so-called mutation of the octonion algebra , where the new multiplication is defined as follows: choose a real number with and put . Vast families of planes with a group of large dimension have been discovered systematically starting from assumptions about their automorphism groups, see, e.g.,.[20][29][30][31][32] Many of them are projective closures of translation planes (affine planes admitting a sharply transitive group of automorphisms mapping each line to a parallel), cf.;[33] see also [34] for more recent results in the case and [30] for .
Compact projective spaces
Subplanes of projective spaces of geometrical dimension at least 3 are necessarily Desarguesian, see [35] §1 or [4] §16 or.[36] Therefore, all compact connected projective spaces can be coordinatized by the real or complex numbers or the quaternion field.[37]
Stable planes
The classical non-euclidean hyperbolic plane can be represented by the intersections of the straight lines in the real plane with an open circular disk. More generally, open (convex) parts of the classical affine planes are typical stable planes. A survey of these geometries can be found in,[38] for the -dimensional case see also.[39]
Precisely, a stable plane is a topological linear geometry such that
(1) is a locally compact space of positive finite dimension,
(2) each line is a closed subset of , and is a Hausdorff space,
(3) the set is an open subspace ( stability),
(4) the map is continuous.
Note that stability excludes geometries like the -dimensional affine space over or .
A stable plane is a projective plane if, and only if, is compact.[40]
As in the case of projective planes, line pencils are compact and homotopy equivalent to a sphere of dimension , and with , see [17] or.[41] Moreover, the point space is locally contractible.[17][42]
Compact groups of (proper) stable planes
are rather small. Let denote a maximal compact subgroup of the automorphism group of the classical -dimensional projective plane . Then the following theorem holds:
If a -dimensional stable plane admits a compact group of automorphisms such that , then , see.[43]
Flag-homogeneous stable planes. Let be a stable plane. If the automorphism group is flag-transitive, then is a classical projective or affine plane, or is isomorphic to the interior of the absolute sphere of the hyperbolic polarity of a classical plane; see.[44][45][46]
In contrast to the projective case, there is an abundance of point-homogeneous stable planes, among them vast classes of translation planes, see [33] and.[47]
Symmetric planes
Affine translation planes have the following property:
There exists a point transitive closed subgroup of the automorphism group which contains a unique reflection at some and hence at each point.
More generally, a symmetric plane is a stable plane satisfying condition (); see,[48] cf.[49] for a survey of these geometries. By [50] Corollary 5.5, the group is a Lie group and the point space is a manifold. It follows that is a symmetric space. By means of the Lie theory of symmetric spaces, all symmetric planes with a point set of dimension or have been classified.[48][51] They are either translation planes or they are determined by a Hermitian form. An easy example is the real hyperbolic plane.
Circle geometries
Classical models [52] are given by the plane sections of a quadratic surface in real projective -space; if is a sphere, the geometry is called a Möbius plane.[39] The plane sections of a ruled surface (one-sheeted hyperboloid) yield the classical Minkowski plane, cf.[53] for generalizations. If is an elliptic cone without its vertex, the geometry is called a Laguerre plane. Collectively these planes are sometimes referred to as Benz planes. A topological Benz plane is classical, if each point has a neighbourhood which is isomorphic to some open piece of the corresponding classical Benz plane.[54]
Möbius planes
Möbius planes consist of a family of circles, which are topological 1-spheres, on the -sphere such that for each point the derived structure is a topological affine plane.[55] In particular, any distinct points are joined by a unique circle. The circle space is then homeomorphic to real projective -space with one point deleted.[56] A large class of examples is given by the plane sections of an egg-like surface in real -space.
Homogeneous Möbius planes
If the automorphism group of a Möbius plane is transitive on the point set or on the set of circles, or if , then is classical and , see.[57][58]
In contrast to compact projective planes there are no topological Möbius planes with circles of dimension , in particular no compact Möbius planes with a -dimensional point space.[59] All 2-dimensional Möbius planes such that can be described explicitly.[60][61]
Laguerre planes
The classical model of a Laguerre plane consists of a circular cylindrical surface in real -space as point set and the compact plane sections of as circles. Pairs of points which are not joined by a circle are called parallel. Let denote a class of parallel points. Then is a plane , the circles can be represented in this plane by parabolas of the form .
In an analogous way, the classical -dimensional Laguerre plane is related to the geometry of complex quadratic polynomials. In general, the axioms of a locally compact connected Laguerre plane require that the derived planes embed into compact projective planes of finite dimension. A circle not passing through the point of derivation induces an oval in the derived projective plane. By [62] or,[63] circles are homeomorphic to spheres of dimension or . Hence the point space of a locally compact connected Laguerre plane is homeomorphic to the cylinder or it is a -dimensional manifold, cf.[64] A large class of -dimensional examples, called ovoidal Laguerre planes, is given by the plane sections of a cylinder in real 3-space whose base is an oval in .
The automorphism group of a -dimensional Laguerre plane () is a Lie group with respect to the topology of uniform convergence on compact subsets of the point space; furthermore, this group has dimension at most . All automorphisms of a Laguerre plane which fix each parallel class form a normal subgroup, the kernel of the full automorphism group. The -dimensional Laguerre planes with are exactly the ovoidal planes over proper skew parabolae.[65] The classical -dimensional Laguerre planes are the only ones such that , see,[66] cf. also.[67]
Homogeneous Laguerre planes
If the automorphism group of a -dimensional Laguerre plane is transitive on the set of parallel classes, and if the kernel is transitive on the set of circles, then is classical, see [68][67] 2.1,2.
However, transitivity of the automorphism group on the set of circles does not suffice to characterize the classical model among the -dimensional Laguerre planes.
Minkowski planes
The classical model of a Minkowski plane has the torus as point space, circles are the graphs of real fractional linear maps on . As with Laguerre planes, the point space of a locally compact connected Minkowski plane is - or -dimensional; the point space is then homeomorphic to a torus or to , see.[69]
Homogeneous Minkowski planes
If the automorphism group of a Minkowski plane of dimension is flag-transitive, then is classical.[70]
The automorphism group of a -dimensional Minkowski plane is a Lie group of dimension at most . All -dimensional Minkowski planes such that can be described explicitly.[71] The classical -dimensional Minkowski plane is the only one with , see.[72]
Notes
- Grundhöfer & Löwen 1995
- Skornyakov, L.A. (1954), "Topological projective planes", Trudy Moskov. Mat. Obschtsch., 3: 347–373
- Hilbert 1899
- Coxeter, H.S.M. (1993), The real projective plane, New York: Springer
- Wyler, . (1952), "Order and topology in projective planes", Amer. J. Math., 74 (3): 656–666, doi:10.2307/2372268, JSTOR 2372268CS1 maint: numeric names: authors list (link)
- Conway, J.H.; Smith, D.A. (2003), On quaternions and octonions: their geometry, arithmetic, and symmetry, Natick, MA: A K Peters
- Salzmann et al. 1995, §92
- Engelking, R. (1978), Dimension theory, North-Holland Publ. Co.
- Fedorchuk, V.V. (1990), "The fundamentals of dimension theory", Encycl. Math. Sci., Berlin: Springer, 17: 91–192
- Salzmann 1967
- Stroppel, M. (1998), "Bemerkungen zur ersten nicht desarguesschen ebenen Geometrie bei Hilbert", J. Geom., 63 (1–2): 183–195, doi:10.1007/bf01221248
- Moulton, F.R. (1902), "A simple non-Desarguesian plane geometry", Trans. Amer. Math. Soc., 3 (2): 192–195, doi:10.1090/s0002-9947-1902-1500595-3
- Pickert 1955
- Hessenberg, G. (1905), "Beweis des Desarguesschen Satzes aus dem Pascalschen", Math. Ann. (in German), 61 (2): 161–172, doi:10.1007/bf01457558
- Hughes, D.R.; Piper, F.C. (1973), Projective planes, Berlin: Springer
- Salzmann et al. 1995, Chapter 3
- Löwen 1983
- Salzmann et al. 1995, 54.11
- Salzmann et al. 1995, Chapter 7
- Betten, D. (1997), "On the classification of -dimensional flexible projective planes", Lect. Notes Pure. Appl. Math., 190: 9–33
- Salzmann et al. 1995, 53.15
- Salzmann, H. (2003), "Baer subplanes", Illinois J. Math., 47 (1–2): 485–513, doi:10.1215/ijm/1258488168
- Salzmann et al. 1995, 55.6
- Löwen, R. (1981), "Homogeneous compact projective planes", J. Reine Angew. Math., 321: 217–220
- Salzmann et al. 1995, 63.8
- Salzmann et al. 1995, 13.12
- Salzmann et al. 1995, 72.8,84.28,85.16
- Salzmann et al. 1995, 73.22,84.28,87.7
- Hähl, H. (1986), "Achtdimensionale lokalkompakte Translationsebenen mit mindestens -dimensionaler Kollineationsgruppe", Geom. Dedicata (in German), 21: 299–340, doi:10.1007/bf00181535
- Hähl, H. (2011), "Sixteen-dimensional locally compact translation planes with collineation groups of dimension at least ", Adv. Geom., 11: 371–380, doi:10.1515/advgeom.2010.046
- Hähl, H. (2000), "Sixteen-dimensional locally compact translation planes with large automorphism groups having no fixed points", Geom. Dedicata, 83: 105–117, doi:10.1023/A:1005212813861
- Salzmann et al. 1995, §§73,74,82,86
- Knarr 1995
- Salzmann 2014
- Hilbert 1899, §§22
- Veblen, O.; Young, J.W. (1910), Projective Geometry Vol. I, Boston: Ginn Comp.
- Kolmogoroff, A. (1932), "Zur Begründung der projektiven Geometrie", Ann. of Math. (in German), 33 (1): 175–176, doi:10.2307/1968111, JSTOR 1968111
- Salzmann et al. 1995, §§3,4
- Polster & Steiner 2001
- Salzmann et al. 1995, 3.11
- Salzmann et al. 1995, 3.28,29
- Grundhöfer & Löwen 1995, 3.7
- Stroppel, M. (1994), "Compact groups of automorphisms of stable planes", Forum Math., 6 (6): 339–359, doi:10.1515/form.1994.6.339
- Löwen, R. (1983), "Stable planes with isotropic points", Math. Z., 182: 49–61, doi:10.1007/BF01162593
- Salzmann et al. 1995, 5.8
- Salzmann 2014, 8.11,12
- Salzmann et al. 1995, Chapters 7 and 8
- Löwen, R. (1979), "Symmetric planes", Pacific J. Math., 84 (2): 367–390, doi:10.2140/pjm.1979.84.367
- Grundhöfer & Löwen 1195, 5.26-31
- Hofmann, K.H.; Kramer, L. (2015), "Transitive actions of locally compact groups on locally contractive spaces", J. Reine Angew. Math., 702: 227–243, 245/6
- Löwen, R. (1979), "Classification of -dimensional symmetric planes", Math. Z., 167: 137–159, doi:10.1007/BF01215118
- Steinke 1995
- Polster & Steinke 2001, §4
- Steinke, G. (1983), "Locally classical Benz planes are classical", Math. Z., 183: 217–220, doi:10.1007/bf01214821
- Wölk, D. (1966), "Topologische Möbiusebenen", Math. Z. (in German), 93: 311–333, doi:10.1007/BF01111942
- Löwen, R.; Steinke, G.F. (2014), "The circle space of a spherical circle plane", Bull. Belg. Math. Soc. Simon Stevin, 21 (2): 351–364, doi:10.36045/bbms/1400592630
- Strambach, K. (1970), "Sphärische Kreisebenen", Math. Z. (in German), 113: 266–292, doi:10.1007/bf01110328
- Steinke 1995, 3.2
- Groh, H. (1973), "Möbius planes with locally euclidean circles are flat", Math. Ann., 201 (2): 149–156, doi:10.1007/bf01359792
- Strambach, K. (1972), "Sphärische Kreisebenen mit dreidimensionaler nichteinfacher Automorphismengruppe", Math. Z. (in German), 124: 289–314, doi:10.1007/bf01113922
- Strambach, K. (1973), "Sphärische Kreisebenen mit einfacher Automorphismengruppe'", Geom. Dedicata (in German), 1: 182–220, doi:10.1007/bf00147520
- Buchanan, T.; Hähl, H.; Löwen, R. (1980), "Topologische Ovale", Geom. Dedicata (in German), 9 (4): 401–424, doi:10.1007/bf00181558
- Salzmann et al. 1995, 55.14
- Steibke 1995, 5.7
- Steinke 1995, 5.5
- Steinke 1995, 5.4,8
- Steinke, G.F. (2002), "-dimensional elation Laguerre planes admitting non-solvable automorphism groups", Monatsh. Math., 136: 327–354, doi:10.1007/s006050200046
- Steinke, G.F. (1993), "-dimensional point-transitive groups of automorphisms of - dimensional Laguerre planes", Results in Mathematics, 24: 326–341, doi:10.1007/bf03322341
- Steinke 1991, 4.6
- Steinke, G.F. (1992), "-dimensional Minkowski planes with large automorphism group", Forum Math., 4: 593–605, doi:10.1515/form.1992.4.593
- Polster & Steinke 2001, §4.4
- Steinke 1995, 4.5 and 4.8
References
- Grundhöfer, T.; Löwen, R. (1995), Buekenhout, F. (ed.), Handbook of incidence geometry: buildings and foundations, Amsterdam: North-Holland, pp. 1255–1324
- Hilbert, D. (1899), The foundations of geometry, translation by E. J. Townsend, 1902, Chicago
- Knarr, N. (1995), Translation planes. Foundations and construction principles, Lecture Notes in Mathematics, 1611, Berlin: Springer
- Löwen, R. (1983), "Topology and dimension of stable planes: On a conjecture of H. Freudenthal", J. Reine Angew. Math., 343: 108–122
- Pickert, G. (1955), Projektive Ebenen (in German), Berlin: Springer
- Polster, B.; Steinke, G.F. (2001), Geometries on surfaces, Cambridge UP
- Salzmann, H. (1967), "Topological planes", Advances in Mathematics, 2: 1–60, doi:10.1016/s0001-8708(67)80002-1
- Salzmann, H. (2014), Compact planes, mostly 8-dimensional. A retrospect, arXiv:1402.0304, Bibcode:2014arXiv1402.0304S
- Salzmann, H.; Betten, D.; Grundhöfer, T.; Hähl, H.; Löwen, R.; Stroppel, M. (1995), Compact Projective Planes, W. de Gruyter
- Steinke, G. (1995), "Topological circle geometries", Handbook of Incidence Geometry, Amsterdam: North-Holland: 1325–1354, doi:10.1016/B978-044488355-1/50026-8, ISBN 9780444883551