Thomas Jones Enright

Thomas Jones Enright (August 15, 1947 January 27, 2019) was an American mathematician known for his work in the algebraic theory of representations of real reductive Lie groups.

Thomas Jones Enright
BornAugust 15, 1947
Concord, New Hampshire, United States
DiedJanuary 27, 2019(2019-01-27) (aged 71)
San Diego, California, United States
Alma materHarvard University B.S. & University of Washington Ph.D.
AwardsAlfred P. Sloan Research Fellowship
Scientific career
FieldsMathematics
InstitutionsUCSD
Doctoral advisorRamesh A. Gangolli

Biography

Enright received a B.S. from Harvard University in 1969 and a Ph.D. in 1973 from the University of Washington under the direction of Ramesh A. Gangolli. From 1973 to 1975 he was the Hedrick Assistant Professor in UCLA working with Veeravalli S. Varadarajan, and spent the 1976-1977 year after in the Institute for Advanced Study at Princeton, N. J. before starting at University of California at San Diego in 1977. He was chair of the mathematics department of UCSD from 1986 to 1990.[1] In 2010 he retired due symptoms of Parkinson's disease.

Contributions

In the mid-1970s, Enright introduced new methods that led him to an algebraic way of looking at discrete series (which were fundamental representations constructed by Harish-Chandra in the early 1960s), and to an algebraic proof of the Blattner multiplicity formula.

He was known for Enright–Varadarajan modules,[2][3] Enright resolutions, and the Enright completion functor,[4][5][6][7] which has had a lasting influence in algebra.

Recognition

Bibliography

  • Enright, Thomas J (1979). "On the Fundamental Series of a Real Semisimple Lie Algebra: Their Irreducibility, Resolutions and Multiplicity Formulae". Annals of Mathematics. 110 (1): 1–82. doi:10.2307/1971244.
  • Enright, Thomas J.; Varadarajan, V. S. (1975). "On an Infinitesimal Characterization of the Discrete Series". Annals of Mathematics. 102 (1): 1–15. doi:10.2307/1970970.
  • Enright, Thomas J (1979). "On the Fundamental Series of a Real Semisimple Lie Algebra: Their Irreducibility, Resolutions and Multiplicity Formulae". Annals of Mathematics. 110 (1): 1–82. doi:10.2307/1971244.
  • Enright, Thomas; Howe, Roger; Wallach, Nolan (1983-01-01). Trombi, P. C., ed. A Classification of Unitary Highest Weight Modules. Progress in Mathematics. Birkhäuser Boston. pp. 97–143. doi:10.1007/978-1-4684-6730-7_7. ISBN 9780817631352.
  • Enright, T. J.; Wallach, N. R. (1980). "Notes on homological algebra and representations of Lie algebras". Duke Mathematical Journal. 47 (1): 1–15. doi:10.1215/S0012-7094-80-04701-8.
  • Davidson, Mark G.; Enright, Thomas J.; Stanke, Ronald J. (1991). "Differential operators and highest weight representations". Memoirs of the American Mathematical Society. 94 (455): 0–0. doi:10.1090/memo/0455.
  • Enright, Thomas J.; Hunziker, Markus; Pruett, W. Andrew (2014-01-01). Howe, Roger; Hunziker, Markus; Willenbring, Jeb F., eds. Diagrams of Hermitian type, highest weight modules, and syzygies of determinantal varieties. Progress in Mathematics. Springer New York. pp. 121–184. doi:10.1007/978-1-4939-1590-3_6. ISBN 9781493915897.
  • Enright, Thomas J (1978). "On the algebraic construction and classification of Harish-Chandra modules". Proceedings of the National Academy of Sciences. 75 (3): 1063–1065. doi:10.1073/pnas.75.3.1063. PMC 411407. PMID 16592507.
gollark: Your proof is thus invalid.
gollark: Sorry, your inductive step was "accidentally" eaten by bees.
gollark: Prove it by mathematical induction.
gollark: Really?
gollark: ↑ certain LyricTech™ entities

References

  1. Support, Math Computing. "UCSD Math | Department History". www.math.ucsd.edu. Retrieved 2016-03-15.
  2. Wallach, Nolan R. (1976-01-01). "On the Enright–Varadarajan modules: A construction of the discrete series". Annales Scientifiques de l'École Normale Supérieure. Série 4. 9: 81–101. doi:10.24033/asens.1304. ISSN 0012-9593.
  3. "Parthasarathy: A generalization of the Enright–Varadarajan modules". www.numdam.org. Retrieved 2016-04-23.
  4. König, Steffen; Mazorchuk, Volodymyr (2002-01-01). "Enright's completions and injectively copresented modules". Transactions of the American Mathematical Society. 354 (7): 2725–2743. doi:10.1090/S0002-9947-02-02958-6. ISSN 0002-9947.
  5. Jakelić, Dijana (2007-06-01). "On crystal bases and Enright's completions". Journal of Algebra. 312 (1): 111–131. arXiv:math/0512506. doi:10.1016/j.jalgebra.2006.11.045.
  6. Khomenko, Oleksandr; Mazorchuk, Volodymyr (2004-10-15). "On Arkhipov's and Enright's functors". Mathematische Zeitschrift. 249 (2): 357–386. doi:10.1007/s00209-004-0702-8. ISSN 0025-5874.
  7. Deodhar, Vinay V. (1980-06-01). "On a construction of representations and a problem of Enright". Inventiones Mathematicae. 57 (2): 101–118. Bibcode:1980InMat..57..101D. doi:10.1007/BF01390091. ISSN 0020-9910.
  8. "Past Fellows". www.sloan.org. Retrieved 2016-03-29.
  9. Duflo, Michel (1979-01-01). "Représentations de carré intégrable des groupes semi-simples réels". Séminaire Bourbaki vol. 1977/78 Exposés 507–524. Lecture Notes in Mathematics (in French). 710. Springer Berlin Heidelberg. pp. 22–40. doi:10.1007/bfb0069971. ISBN 9783540092438.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.