Theta function of a lattice
In mathematics, the theta function of a lattice is a function whose coefficients give the number of vectors of a given norm.
Definition
One can associate to any (positive-definite) lattice Λ a theta function given by
The theta function of a lattice is then a holomorphic function on the upper half-plane. Furthermore, the theta function of an even unimodular lattice of rank n is actually a modular form of weight n/2. The theta function of an integral lattice is often written as a power series in so that the coefficient of qn gives the number of lattice vectors of norm 2n.
gollark: Wrong.
gollark: Minoteaur is webscale because it's a web app.
gollark: W E B S C A L E.
gollark: It already exists, has good tooling, and you can make it webscale.
gollark: Yes. Do so.
References
- Deconinck, Bernard (2010), "Multidimensional Theta Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.