Tetrakis(methylammonium) hexachloroferrate(III) chloride

Tetrakis(methylammonium) hexachloroferrate(III) chloride is a chemical compound with the formula (CH3NH3)4[FeCl6]Cl.

Tetrakis(methylammonium) hexachloroferrate(III) chloride
Names
IUPAC name
Tetrakis(methylammonium) hexachloroferrate(III) chloride
Identifiers
3D model (JSmol)
Properties
C4H24Cl7FeN4
Molar mass 432.26 g·mol−1
Appearance orange crystals
Density 1.58 g cm3[1]
Melting point 155 °C (311 °F; 428 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

Properties

The compound has the form of hygroscopic orange crystals.[2] The hexachloroferrate(III) anion is a coordination complex centred on an iron atom in the +3 oxidation state that is covalently bound to six chloride atoms arranged octahedrally around it. Interstitial chloride anions are each surrounded by four methylammonium cations, with hydrogen bond-like links between the ammonium cations and the ligands of the hexachloroferrate(III) moieties.[1] Each [(CH3NH3)4Cl]3+ unit balances a [FeCl6]3–, analogous to how hexachloroferrate(III) forms stable compounds with various large triply-cationic atoms[1] and other triply-cationic complexes.[2]

Synthesis

The compound is synthesised by reacting methylammonium chloride, CH3NH3Cl, with anhydrous iron(III) chloride and adding hydrochloric acid with heating. Crystals of the product, which precipitate as the solvent evaporates, are collected and dried using vacuum desiccation.[2]

Infrared analysis

There is a series of bands from 3129 to 2830 cm−1 that represent stretching modes of the nitrogen–hydrogen bonds. In addition, a distinct peak is found at 2517 cm−1, whereas the corresponding signal for methylammonium chloride is at 2476 cm−1.[1][3] The 31 cm−1 shift is due to the coordination of an ammonium hydrogen with the hexachloroferrate(III).

Notes

  1. James, B. D.; Bakalova, M.; Lieseganga, J.; Reiff, W. M.; Hockless, D. C. R.; Skelton, B. W.; White, A. H. (1996). "The hexachloroferrate(III) anion stabilized in hydrogen bonded packing arrangements. A comparison of the X-ray crystal structures and low temperature magnetism of tetrakis(methylammonium) hexachloroferrate(III) chloride (I) and tetrakis(hexamethylenediammonium) hexachloroferrate(III) tetrachloroferrate(III) tetrachloride (II)". Inorganica Chimica Acta. 247 (2): 169–174. doi:10.1016/0020-1693(95)04955-X.
  2. Clausen, C. A.; Good, M. L. (1968). "Stabilization of the hexachloroferrate(III) anion by the methylammonium cation". Inorganic Chemistry. 7 (12): 2662–2663. doi:10.1021/ic50070a047.
  3. "methyl ammonium chloride" http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
gollark: There's only 8MB of storage I think.
gollark: The hardware is kind of underpowered for that, arguably.
gollark: Rust would be good to use.
gollark: Isn't the point of nameservers on different IPs redundancy, which isn't actually increased if both IPs are on one server?
gollark: Have you considered using Wireguard instead, for purposes?
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.