Taylor state

In plasma physics, a Taylor state is the minimum energy state of a plasma satisfying the constraint of conserving magnetic helicity.[1]

Derivation

Consider a closed, simply-connected, flux-conserving, perfectly conducting surface surrounding a plasma with negligible thermal energy ().

Since on . This implies that .

As discussed above, the plasma would relax towards a minimum energy state while conserving its magnetic helicity. Since the boundary is perfectly conducting, there cannot be any change in the associated flux. This implies and on .

We formulate a variational problem of minimizing the plasma energy while conserving magnetic helicity .

The variational problem is .

After some algebra this leads to the following constraint for the minimum energy state .

gollark: If you want to do something different based on user input, consider the incredibly advanced "if statement".
gollark: This is forbidden.
gollark: Do NOT orient objects.
gollark: 3.
gollark: Utterly wrong.

See also

References

  1. Paul M. Bellan (2000). Spheromaks: A Practical Application of Magnetohydrodynamic dynamos and plasma self-organization. pp. 71–79. ISBN 978-1-86094-141-2.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.