T-coloring

In graph theory, a T-Coloring of a graph , given the set T of nonnegative integers containing 0, is a function that maps each vertex to a positive integer (color) such that if u and w are adjacent then .[1] In simple words, the absolute value of the difference between two colors of adjacent vertices must not belong to fixed set T. The concept was introduced by William K. Hale.[2] If T = {0} it reduces to common vertex coloring.

Two T -colorings of a graph for T = {0, 1, 4}

The T-chromatic number, is the minimum number of colors that can be used in a T-coloring of G.

The complementary coloring of T-coloring c, denoted is defined for each vertex v of G by

where s is the largest color assigned to a vertex of G by the c function.[1]

Relation to Chromatic Number

Proposition. .[3]

Proof. Every T-coloring of G is also a vertex coloring of G, so Suppose that and Given a common vertex k-coloring function using the colors We define as

For every two adjacent vertices u and w of G,

so Therefore d is a T-coloring of G. Since d uses k colors, Consequently,

T-span

The span of a T-coloring c of G is defined as

The T-span is defined as:

[4]

Some bounds of the T-span are given below:

  • For every k-chromatic graph G with clique of size and every finite set T of nonnegative integers containing 0,
  • For every graph G and every finite set T of nonnegative integers containing 0 whose largest element is r, [5]
  • For every graph G and every finite set T of nonnegative integers containing 0 whose cardinality is t, [5]
gollark: We should teach abstract algebra instead of trigonometry, for purposes.
gollark: For learning later programming.
gollark: The issue with basic programming instruction is that while you can do moderately useful things with basic maths like trigonometry and whatever, you can't do anything practical with Scratch and the teaching value is vaguely dubious.
gollark: Maths is vaguely beeoidally taught anyway.
gollark: https://osmarks.net/nemc

See also

References

  1. Chartrand, Gary; Zhang, Ping (2009). "14. Colorings, Distance, and Domination". Chromatic Graph Theory. CRC Press. pp. 397–402.
  2. W. K. Hale, Frequency assignment: Theory and applications. Proc. IEEE 68 (1980) 1497–1514.
  3. M. B. Cozzens and F. S. Roberts, T -colorings of graphs and the Channel Assignment Problem. Congr. Numer. 35 (1982) 191–208.
  4. Chartrand, Gary; Zhang, Ping (2009). "14. Colorings, Distance, and Domination". Chromatic Graph Theory. CRC Press. p. 399.
  5. M. B. Cozzens and F. S. Roberts, T -colorings of graphs and the Channel Assignment Problem. Congr. Numer. 35 (1982) 191–208.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.