Symmetric inverse semigroup

In abstract algebra, the set of all partial bijections on a set X (a.k.a. one-to-one partial transformations) forms an inverse semigroup, called the symmetric inverse semigroup[1] (actually a monoid) on X. The conventional notation for the symmetric inverse semigroup on a set X is [2] or .[3] In general is not commutative.

Details about the origin of the symmetric inverse semigroup are available in the discussion on the origins of the inverse semigroup.

Finite symmetric inverse semigroups

When X is a finite set {1, ..., n}, the inverse semigroup of one-to-one partial transformations is denoted by Cn and its elements are called charts or partial symmetries.[4] The notion of chart generalizes the notion of permutation. A (famous) example of (sets of) charts are the hypomorphic mapping sets from the reconstruction conjecture in graph theory.[5]

The cycle notation of classical, group-based permutations generalizes to symmetric inverse semigroups by the addition of a notion called a path, which (unlike a cycle) ends when it reaches the "undefined" element; the notation thus extended is called path notation.[6]

gollark: This is inelegant and bee.
gollark: No.
gollark: Remove all nonprimitive types and just copy those.
gollark: The solution is simple.
gollark: There's a better* way. Just make it so that all shapes are actually just a maximally generic Shape of some sort, which can be converted into Option<Rectangle>s.

See also

Notes

  1. Pierre A. Grillet (1995). Semigroups: An Introduction to the Structure Theory. CRC Press. p. 228. ISBN 978-0-8247-9662-4.
  2. Hollings 2014, p. 252
  3. Ganyushkin and Mazorchuk 2008, p. v
  4. Lipscomb 1997, p. 1
  5. Lipscomb 1997, p. xiii
  6. Lipscomb 1997, p. xiii

References

  • S. Lipscomb (1997) Symmetric Inverse Semigroups, AMS Mathematical Surveys and Monographs, ISBN 0-8218-0627-0.
  • Olexandr Ganyushkin; Volodymyr Mazorchuk (2008). Classical Finite Transformation Semigroups: An Introduction. Springer Science & Business Media. doi:10.1007/987-1-84800-281-4_1. ISBN 978-1-84800-281-4.
  • Christopher Hollings (2014). Mathematics across the Iron Curtain: A History of the Algebraic Theory of Semigroups. American Mathematical Society. ISBN 978-1-4704-1493-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.