Square principle

In mathematical set theory, a square principle is a combinatorial principle asserting the existence of a cohering sequence of short closed unbounded (club) sets so that no one (long) club set coheres with them all. As such they may be viewed as a kind of incompactness phenomenon.[1] They were introduced by Ronald Jensen in his analysis of the fine structure of the constructible universe L.

Definition

Define Sing to be the class of all limit ordinals which are not regular. Global square states that there is a system satisfying:

  1. is a club set of .
  2. ot
  3. If is a limit point of then and

Variant relative to a cardinal

Jensen introduced also a local version of the principle.[2] If is an uncountable cardinal, then asserts that there is a sequence satisfying:

  1. is a club set of .
  2. If , then
  3. If is a limit point of then

Jensen proved that this principle holds in the constructible universe for any uncountable cardinal κ.

Notes

  1. Cummings, James (2005), "Notes on Singular Cardinal Combinatorics", Notre Dame Journal of Formal Logic, 46 (3): 251–282, doi:10.1305/ndjfl/1125409326 Section 4.
  2. Jech, Thomas (2003), Set Theory: Third Millennium Edition, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-44085-7, p. 443.
gollark: Definitely!
gollark: Vulkan?
gollark: Obviously the computer has to be self-replicating.
gollark: Then, nest it infinitely and obliterate an entire bird nest with some sort of stone-based superweapon.
gollark: Make Minecraft (or at least redstone) in OpenGL compute shaders somehow, implement a computer in that, and then implement OpenGL on there, to obliterate THREE birds at once.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.