Spectral gap (physics)

In quantum mechanics, the spectral gap of a system is the energy difference between its ground state and its first excited state.[1][2] The mass gap is the spectral gap between the vacuum and the lightest particle. A Hamiltonian with a spectral gap is called a gapped Hamiltonian, and those that do not are called gapless.

In solid-state physics, the most important spectral gap is for the many-body system of electrons in a solid material, in which case it is often known as an energy gap.

In quantum many-body systems, ground states of gapped Hamiltonians have exponential decay of correlations.[3][4][5]

In 2015 it was shown that the problem of determining the existence of a spectral gap is undecidable.[6][7] The authors used an aperiodic tiling of quantum Turing machines and showed that this hypothetical material becomes gapped if and only if it halts.[8]

See also

References

  1. Cubitt, Toby S.; Perez-Garcia, David; Wolf, Michael M. (2015-12-10). "Undecidability of the spectral gap". Nature. US: National Center for Biotechnology Information, U.S. National Library of Medicine. 528 (7581): 207–211. arXiv:1502.04135. Bibcode:2015Natur.528..207C. doi:10.1038/nature16059. PMID 26659181.
  2. Lim, Jappy (11 December 2015). "Scientists Just Proved A Fundamental Quantum Physics Problem is Unsolvable". Futurism. Retrieved 18 December 2018.
  3. Nachtergaele, Bruno; Sims, Robert (22 March 2006). "Lieb-Robinson Bounds and the Exponential Clustering Theorem". Communications in Mathematical Physics. 265 (1): 119–130. arXiv:math-ph/0506030. doi:10.1007/s00220-006-1556-1.
  4. Hastings, Matthew B.; Koma, Tohru (22 April 2006). "Spectral Gap and Exponential Decay of Correlations". Communications in Mathematical Physics. 265 (3): 781–804. arXiv:math-ph/0507008. doi:10.1007/s00220-006-0030-4.
  5. Gosset, David; Huang, Yichen (3 March 2016). "Correlation Length versus Gap in Frustration-Free Systems". Physical Review Letters. 116 (9): 097202. doi:10.1103/PhysRevLett.116.097202.
  6. Cubitt, Toby S.; Perez-Garcia, David; Wolf, Michael M. (2015). "Undecidability of the spectral gap". Nature. 528 (7581): 207–211. arXiv:1502.04135. Bibcode:2015Natur.528..207C. doi:10.1038/nature16059. PMID 26659181.
  7. Kreinovich, Vladik. "Why Some Physicists Are Excited About the Undecidability of the Spectral Gap Problem and Why Should We". Bulletin of the European Association for Theoretical Computer Science. 122 (2017). Retrieved 18 December 2018.
  8. Cubitt, Toby S.; Perez-Garcia, David; Wolf, Michael M. (November 2018). "The Unsolvable Problem". Scientific American.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.