Solvmanifold

In mathematics, a solvmanifold is a homogeneous space of a connected solvable Lie group. It may also be characterized as a quotient of a connected solvable Lie group by a closed subgroup. (Some authors also require that the Lie group be simply-connected, or that the quotient be compact.) A special class of solvmanifolds, nilmanifolds, was introduced by Anatoly Maltsev, who proved the first structural theorems. Properties of general solvmanifolds are similar, but somewhat more complicated.

Examples

  • A solvable Lie group is trivially a solvmanifold.
  • Every nilpotent group is solvable, therefore, every nilmanifold is a solvmanifold. This class of examples includes n-dimensional tori and the quotient of the 3-dimensional real Heisenberg group by its integral Heisenberg subgroup.
  • The Möbius band and the Klein bottle are solvmanifolds that are not nilmanifolds.
  • The mapping torus of an Anosov diffeomorphism of the n-torus is a solvmanifold. For , these manifolds belong to Sol, one of the eight Thurston geometries.

Properties

  • A solvmanifold is diffeomorphic to the total space of a vector bundle over some compact solvmanifold. This statement was conjectured by George Mostow and proved by Louis Auslander and Richard Tolimieri.
  • The fundamental group of an arbitrary solvmanifold is polycyclic.
  • A compact solvmanifold is determined up to diffeomorphism by its fundamental group.
  • Fundamental groups of compact solvmanifolds may be characterized as group extensions of free abelian groups of finite rank by finitely generated torsion-free nilpotent groups.
  • Every solvmanifold is aspherical. Among all compact homogeneous spaces, solvmanifolds may be characterized by the properties of being aspherical and having a solvable fundamental group.

Completeness

Let be a real Lie algebra. It is called a complete Lie algebra if each map

in its adjoint representation is hyperbolic, i.e., it has only real eigenvalues. Let G be a solvable Lie group whose Lie algebra is complete. Then for any closed subgroup of G, the solvmanifold is a complete solvmanifold.

gollark: ++deploy apiosystems
gollark: Like incdec.
gollark: Yes, the EWO page is not templated properly and does not have the site themes.
gollark: I didn't tweak it.
gollark: Oh dear, it seems that osmarks.tk has run into apioproblems?

References

  • Louis Auslander, An exposition of the structure of solvmanifolds I, II, Bulletin of the American Mathematical Society, 79:2 (1973), pp. 227–261, 262–285
  • Cooper, Daryl; Scharlemann, Martin (1999), "The structure of a solvmanifold's Heegaard splittings" (PDF), Proceedings of 6th Gökova Geometry-Topology Conference, Turkish Journal of Mathematics, 23 (1): 1–18, ISSN 1300-0098, MR 1701636
  • V.V. Gorbatsevich (2001) [1994], "Solvmanifold", Encyclopedia of Mathematics, EMS Press
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.