Robert M. Solovay

Robert Martin Solovay (born December 15, 1938) is an American mathematician specializing in set theory.

Robert M. Solovay
Robert Solovay in 1983 (photo by George Bergman)
Born (1938-12-15) December 15, 1938
Brooklyn, New York, U.S.
NationalityAmerican
Alma materUniversity of Chicago
AwardsParis Kanellakis Award (2003)
Scientific career
FieldsMathematics
InstitutionsUniversity of California, Berkeley
Doctoral advisorSaunders Mac Lane
Doctoral studentsMatthew Foreman
Judith Roitman
W. Hugh Woodin

Biography

Solovay earned his Ph.D. from the University of Chicago in 1964 under the direction of Saunders Mac Lane, with a dissertation on A Functorial Form of the Differentiable Riemann–Roch theorem.[1] Solovay has spent his career at the University of California at Berkeley, where his Ph.D. students include W. Hugh Woodin and Matthew Foreman.[2]

Work

Solovay's theorems include:

  • Solovay's theorem showing that, if one assumes the existence of an inaccessible cardinal, then the statement "every set of real numbers is Lebesgue measurable" is consistent with ZF without the axiom of choice;
  • Isolating the notion of 0#;
  • Proving that the existence of a real-valued measurable cardinal is equiconsistent with the existence of a measurable cardinal;
  • Proving that if is a strong limit singular cardinal, greater than a strongly compact cardinal then holds;
  • Proving that if is an uncountable regular cardinal, and is a stationary set, then can be decomposed into the union of disjoint stationary sets;
  • With Stanley Tennenbaum, developing the method of iterated forcing and showing the consistency of Suslin's hypothesis.
  • With Donald A. Martin, showed the consistency of Martin's Axiom with arbitrarily large cardinality of the continuum.
  • Outside of set theory, developing (with Volker Strassen) the Solovay–Strassen primality test, used to identify large natural numbers that are prime with high probability. This method has had implications for cryptography.
  • With T. P. Baker, J. Gill, proved that relativizing arguments cannot prove .[3]
  • Proving that GL (the normal modal logic which has the instances of the schema as additional axioms) completely axiomatizes the logic of the provability predicate of Peano Arithmetic.
  • With Alexei Kitaev, proving that a finite set of quantum gates can efficiently approximate an arbitrary unitary operator on one qubit.

Selected publications

  • Solovay, Robert M. (1970). "A model of set-theory in which every set of reals is Lebesgue measurable". Annals of Mathematics. Second Series. 92 (1): 1–56. doi:10.2307/1970696. JSTOR 1970696.
  • Solovay, Robert M. (1967). "A nonconstructible Δ13 set of integers". Transactions of the American Mathematical Society. American Mathematical Society. 127 (1): 50–75. doi:10.2307/1994631. JSTOR 1994631.
  • Solovay, Robert M. and Volker Strassen (1977). "A fast Monte-Carlo test for primality". SIAM Journal on Computing. 6 (1): 84–85. doi:10.1137/0206006.
gollark: Sorry, the global variables incurse.
gollark: Oh, outside of `mkhtml`?
gollark: According to our researchers, there are `int`s over 5 digits.
gollark: It will IMMEDIATELY implode.
gollark: `char nextq [5]; sprintf (nextq, "%i=", qno + 1);` ← what if the number is VERY BIG?!

See also

References

  1. Robert M. Solovay at the Mathematics Genealogy Project
  2. https://math.berkeley.edu/people/faculty/robert-m-solovay
  3. Emerson, T. (1994-10-10). "Relativizations of the P=?NP question over the reals (and other ordered rings)". Theoretical Computer Science. 133 (1): 15–22. doi:10.1016/0304-3975(94)00068-9. ISSN 0304-3975.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.