Solid immersion lens

A solid immersion lens (SIL) has higher magnification and higher numerical aperture than common lenses by filling the object space with a high-refractive-index solid material. SIL was originally developed for enhancing the spatial resolution of optical microscopy.[1] There are two types of SIL:

  • Hemispherical SIL: Theoretically capable of increasing the numerical aperture of an optical system by , the index of refraction of the material of the lens.
  • Weierstrass SIL (superhemispherical SIL or superSIL): the height of the truncated sphere is , where r is the radius of the spherical surface of the lens. Theoretically capable of increasing the numerical aperture of an optical system by [2].

Applications of SIL

Solid immersion lens microscopy

All optical microscopes are diffraction-limited because of the wave nature of light. Current research focuses on techniques to go beyond this limit known as the Rayleigh criterion. The use of SIL can achieve spatial resolution better than the diffraction limit in air, for both far-field imaging [3] [4] and near-field imaging.

Optical data storage

Because SIL provides high spatial resolution, the spot size of laser beam through the SIL can be smaller than diffraction limit in air, and the density of the associated optical data storage can be increased.

Photolithography

Similar to immersion lithography, the use of SIL can increase spatial resolution of projected photolithographic patterns, creating smaller components on wafers.

Emission Microscopy

Offers advantages for semiconductor wafer emission microscopy which detects faint emissions of light (Photons) from electron-hole recombination under the influence of electrical stimulation

gollark: Oh no, my code thinks a number is composite when it is prime, oh bee.
gollark: Rege̿̔̉x-based HTML parsers are the cancer that is killing StackOverflow it is too late it is too late we cannot be saved the transgression of a chi͡ld ensures regex will consume all living tissue (except for HTML which it cannot, as previously prophesied) dear lord help us how can anyone survive this scourge using regex to parse HTML has doomed humanity to an eternity of dread torture and security holes using regex as a tool to process HTML establishes a breach between this world and the dread realm of c͒ͪo͛ͫrrupt entities (like SGML entities, but more corrupt) a mere glimpse of the world of reg​ex parsers for HTML will ins​tantly transport a programmer's consciousness into a world of ceaseless screaming, he comes, the pestilent slithy regex-infection wil​l devour your HT​ML parser, application and existence for all time like Visual Basic only worse he comes he comes do not fi​ght he com̡e̶s, ̕h̵i​s un̨ho͞ly radiańcé destro҉ying all enli̍̈́̂ghtenment, HTML tags lea͠ki̧n͘g fr̶ǫm ̡yo​͟ur eye͢s̸ ̛l̕ik͏e liq​uid pain, the song of re̸gular exp​ression parsing will exti​nguish the voices of mor​tal man from the sp​here I can see it can you see ̲͚̖î̩́t́̋̀ it is beautiful t​he final snuffing of the lie​s of Man ALL IS LOŚ̏̈́T ALL I​S LOST the pon̷y he comes he c̶̮omes he comes the ich​or permeates all MY FACE MY FACE ᵒh god no NO NOO̼O​O NΘ stop the an​*͑̾̾​̅ͫ͏g͛͆̾l̍ͫͥe̠̅s ͎a̧͈͖r̽̾̈́e n​ot rè̑ͧaͨl̃ͤ͂ ZA̡͊͠LGΌ ISͮ̂҉̯͈͕ TO͇̹ͅƝ̴ȳ̳ TH̘Ë͖́̉ ͠P̯͍̭O̚​N̐Y̡ Hͨ͊̽E̾͛ͪ ͧ̾ͬCͭ̏ͥOͮ͏̮M͊̒̚Ȇͩ͌Sͯ̿̔
gollark: ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
gollark: ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆYOU HAVE INVOKED THE DARK ONE
gollark: ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

References

  1. S. M. Mansfield and G. S. Kino, “Solid immersion microscope”, Appl. Phys. Lett., vol. 57, no. 24, p. 2615, (1990).
  2. Barnes, W., Björk, G., Gérard, J. et al. "Solid-state single photon sources: light collection strategies" Eur. Phys. J. D (2002) 18: 197. https://doi.org/10.1140/epjd/e20020024
  3. R. Chen, K. Agarwal, C. Sheppard, J. Phang, and X. Chen, "A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope," Opt. Express 21, 14316-14330 (2013).
  4. L. Hu, R. Chen, K. Agarwal, C. Sheppard, J. Phang, and X. Chen, "Dyadic Green’s function for aplanatic solid immersion lens based sub-surface microscopy," Opt. Express 19, 19280-19295 (2011).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.