Slender-body theory

In fluid dynamics and electrostatics, slender-body theory is a methodology that can be used to take advantage of the slenderness of a body to obtain an approximation to a field surrounding it and/or the net effect of the field on the body. Principal applications are to Stokes flow — at very low Reynolds numbers — and in electrostatics.

Theory for Stokes flow

Consider slender body of length and typical diameter with , surrounded by fluid of viscosity whose motion is governed by the Stokes equations. Note that the Stokes' paradox implies that the limit of infinite aspect ratio is singular, as no Stokes flow can exist around an infinite cylinder.

Slender-body theory allows us to derive an approximate relationship between the velocity of the body at each point along its length and the force per unit length experienced by the body at that point.

Let the axis of the body be described by , where is an arc-length coordinate, and is time. By virtue of the slenderness of the body, the force exerted on the fluid at the surface of the body may be approximated by a distribution of Stokeslets along the axis with force density per unit length. is assumed to vary only over lengths much greater than , and the fluid velocity at the surface adjacent to is well-approximated by .

The fluid velocity at a general point due to such a distribution can be written in terms of an integral of the Oseen tensor (named after Carl Wilhelm Oseen), which acts as a Greens function for a single Stokeslet. We have

where is the identity tensor.

Asymptotic analysis can then be used to show that the leading-order contribution to the integral for a point on the surface of the body adjacent to position comes from the force distribution at . Since , we approximate . We then obtain

where .

The expression may be inverted to give the force density in terms of the motion of the body:

Two canonical results that follow immediately are for the drag force on a rigid cylinder (length , radius ) moving a velocity either parallel to its axis or perpendicular to it. The parallel case gives

while the perpendicular case gives

with only a factor of two difference.

Note that the dominant length scale in the above expressions is the longer length ; the shorter length has only a weak effect through the logarithm of the aspect ratio. In slender-body theory results, there are corrections to the logarithm, so even for relatively large values of the error terms will not be that small.

gollark: I did.
gollark: Also not AE2 stuff.
gollark: As I said, no Ender IO is installed.
gollark: Anyone know of good (fast) inscriber automation designs? I've been overhauling my base lately and need one.
gollark: <@148963262535434240> Another thing you could do is make a very efficient but overheating one and add a simple redstone circuit or computer controller to shut it down if heat gets too high (then to turn it on when it cools down).

References

  • Batchelor, G. K. (1970), "Slender-body theory for particles of arbitrary cross-section in Stokes flow", J. Fluid Mech., 44 (3): 419–440, Bibcode:1970JFM....44..419B, doi:10.1017/S002211207000191X
  • Cox, R. G. (1970), "The motion of long slender bodies in a viscous fluid. Part 1. General Theory", J. Fluid Mech., 44 (4): 791–810, Bibcode:1970JFM....44..791C, doi:10.1017/S002211207000215X
  • Hinch, E. J. (1991), Perturbation Methods, Cambridge University Press, ISBN 978-0-521-37897-0
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.