Skorokhod problem

In probability theory, the Skorokhod problem is the problem of solving a stochastic differential equation with a reflecting boundary condition.[1]

The problem is named after Anatoliy Skorokhod who first published the solution to a stochastic differential equation for a reflecting Brownian motion.[2][3][4]

Problem statement

The classic version of the problem states[5] that given a càdlàg process {X(t), t  0} and an M-matrix R, then stochastic processes {W(t), t  0} and {Z(t), t  0} are said to solve the Skorokhod problem if for all non-negative t values,

  1. W(t) = X(t) + R Z(t)  0
  2. Z(0) = 0 and dZ(t)  0
  3. .

The matrix R is often known as the reflection matrix, W(t) as the reflected process and Z(t) as the regulator process.

gollark: Besides, fighting people is mean.
gollark: You can't have 20 people though, something something rule of 6.
gollark: FEAR Shor's algorithm.
gollark: "Worth £3000" because they would otherwise charge £3000 for it presumably.
gollark: It's basically Essentials but reskinned, apparently. Not Elite.

See also

List of things named after Anatoliy Skorokhod

References

  1. Lions, P. L.; Sznitman, A. S. (1984). "Stochastic differential equations with reflecting boundary conditions". Communications on Pure and Applied Mathematics. 37 (4): 511. doi:10.1002/cpa.3160370408.
  2. Skorokhod, A. V. (1961). "Stochastic equations for diffusion processes in a bounded region 1". Theor. Veroyatnost. i Primenen. 6: 264–274.
  3. Skorokhod, A. V. (1962). "Stochastic equations for diffusion processes in a bounded region 2". Theor. Veroyatnost. i Primenen. 7: 3–23.
  4. Tanaka, Hiroshi (1979). "Stochastic differential equations with reflecting boundary condition in convex regions". Hiroshima Math. J. 9 (1): 163–177.
  5. Haddad, J. P.; Mazumdar, R. R.; Piera, F. J. (2010). "Pathwise comparison results for stochastic fluid networks". Queueing Systems. 66 (2): 155. doi:10.1007/s11134-010-9187-9.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.