Skorokhod's embedding theorem

In mathematics and probability theory, Skorokhod's embedding theorem is either or both of two theorems that allow one to regard any suitable collection of random variables as a Wiener process (Brownian motion) evaluated at a collection of stopping times. Both results are named for the Ukrainian mathematician A. V. Skorokhod.

Skorokhod's first embedding theorem

Let X be a real-valued random variable with expected value 0 and finite variance; let W denote a canonical real-valued Wiener process. Then there is a stopping time (with respect to the natural filtration of W), τ, such that Wτ has the same distribution as X,

and

Skorokhod's second embedding theorem

Let X1, X2, ... be a sequence of independent and identically distributed random variables, each with expected value 0 and finite variance, and let

Then there is a sequence of stopping times τ1 τ2 ... such that the have the same joint distributions as the partial sums Sn and τ1, τ2 τ1, τ3 τ2, ... are independent and identically distributed random variables satisfying

and

gollark: I can be bothered to make changes to ABR at arbitrary times for not much reason, so you should too.
gollark: Wrong.
gollark: Just PR ABR or else you will not have done so.
gollark: Oops.
gollark: Surprisingly, yes.

References

  • Billingsley, Patrick (1995). Probability and Measure. New York: John Wiley & Sons, Inc. ISBN 0-471-00710-2. (Theorems 37.6, 37.7)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.