Skew gradient
In mathematics, a skew gradient of a harmonic function over a simply connected domain with two real dimensions is a vector field that is everywhere orthogonal to the gradient of the function and that has the same magnitude as the gradient.
Definition
The skew gradient can be defined using complex analysis and the Cauchy–Riemann equations.
Let be a complex-valued analytic function, where u,v are real-valued scalar functions of the real variables x, y.
A skew gradient is defined as:
and from the Cauchy–Riemann equations, it is derived that
Properties
The skew gradient has two interesting properties. It is everywhere orthogonal to the gradient of u, and of the same length:
gollark: My blattidus server still "works", apart from the unicode issues.
gollark: How exciting.
gollark: Contribute to AutoBotRobot!
gollark: Is Blattidus/2 available yet?
gollark: Implement Forth in APL.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.