Coryphasia
Coryphasia is a genus of jumping spiders that was first described by Eugène Louis Simon in 1902.[3]
Coryphasia | |
---|---|
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Subphylum: | Chelicerata |
Class: | Arachnida |
Order: | Araneae |
Infraorder: | Araneomorphae |
Family: | Salticidae |
Genus: | Coryphasia Simon, 1902[1] |
Type species | |
C. albibarbis Simon, 1902 | |
Species | |
16, see text | |
Synonyms[1] | |
Species
As of June 2019 it contains sixteen species, found in Brazil, Argentina, Jamaica, on the Greater Antilles, and in French Guiana:[1]
- Coryphasia albibarbis Simon, 1902 (type) – Brazil
- Coryphasia artemioi Bauab, 1986 – Brazil
- Coryphasia bulbosa (Tullgren, 1905) – Argentina
- Coryphasia campestrata (Simon, 1902) – Brazil
- Coryphasia cardoso Santos & Romero, 2007 – Brazil
- Coryphasia castaneipedis Mello-Leitão, 1947 – Brazil
- Coryphasia fasciiventris (Simon, 1902) – Brazil
- Coryphasia furcata Simon, 1902 – Brazil
- Coryphasia melloleitaoi Soares & Camargo, 1948 – Brazil
- Coryphasia monae (Petrunkevitch, 1930) – Puerto Rico
- Coryphasia monteverde Santos & Romero, 2007 – Brazil
- Coryphasia nigriventris Mello-Leitão, 1947 – Brazil
- Coryphasia nuptialis Bauab, 1986 – Brazil
- Coryphasia sanguiniceps (Simon, 1902) – Brazil
- Coryphasia septentrionalis (Caporiacco, 1954) – French Guiana
- Coryphasia viaria (Peckham & Peckham, 1901) – Jamaica
gollark: This is actually somehow really accurate.
gollark: True engineers approximate the pendulum time period formula $T=2\pi \sqrt{\frac{l}{g}}$ as $T=2\sqrt{l}$.
gollark: So basically just "optics but we are HIGHLY engineer-like and use the small angle approximation".
gollark: According to Wikipedia, which I just checked, which makes me an expert,> Gaussian optics is a technique in geometrical optics that describes the behaviour of light rays in optical systems by using the paraxial approximation, in which only rays which make small angles with the optical axis of the system are considered. In this approximation, trigonometric functions can be expressed as linear functions of the angles. Gaussian optics applies to systems in which all the optical surfaces are either flat or are portions of a sphere. In this case, simple explicit formulae can be given for parameters of an imaging system such as focal length, magnification and brightness, in terms of the geometrical shapes and material properties of the constituent elements.
gollark: Fearsome.
References
- "Gen. Coryphasia Simon, 1902". World Spider Catalog Version 20.0. Natural History Museum Bern. 2019. doi:10.24436/2. Retrieved 2019-07-06.
- Zhang, J. X.; Maddison, W. P. (2015). "Genera of euophryine jumping spiders (Araneae: Salticidae), with a combined molecular-morphological phylogeny". Zootaxa. 3938 (1): 23. doi:10.11646/zootaxa.3938.1.1</a>.
- Simon, E. (1902). "Description d'arachnides nouveaux de la famille des Salticidae (Attidae) (suite)". Annales de la Société Entomologique de Belgique. 46: 363–406.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.