Siegel identity
In mathematics, Siegel's identity refers to one of two formulae that are used in the resolution of Diophantine equations.
Statement
The first formula is
The second is
Application
The identities are used in translating Diophantine problems connected with integral points on hyperelliptic curves into S-unit equations.
gollark: I like CSS.
gollark: And I dislike that.
gollark: Same with its magic `comparable` pseudotypeclasses thing.
gollark: As in, nobody except the standard library gets to define operators.
gollark: You know they actually killed off custom operators?
See also
- Siegel formula
References
- Baker, Alan (1975). Transcendental Number Theory. Cambridge University Press. p. 40. ISBN 0-521-20461-5. Zbl 0297.10013.
- Baker, Alan; Wüstholz, Gisbert (2007). Logarithmic Forms and Diophantine Geometry. New Mathematical Monographs. 9. Cambridge University Press. p. 53. ISBN 978-0-521-88268-2. Zbl 1145.11004.
- Kubert, Daniel S.; Lang, Serge (1981). Modular Units. Grundlehren der Mathematischen Wissenschaften. 244. ISBN 0-387-90517-0.
- Lang, Serge (1978). Elliptic Curves: Diophantine Analysis. Grundlehren der mathematischen Wissenschaften. 231. Springer-Verlag. ISBN 0-387-08489-4.
- Smart, N. P. (1998). The Algorithmic Resolution of Diophantine Equations. London Mathematical Society Student Texts. 41. Cambridge University Press. pp. 36–37. ISBN 0-521-64633-2.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.