Siegel identity
In mathematics, Siegel's identity refers to one of two formulae that are used in the resolution of Diophantine equations.
Statement
The first formula is
The second is
Application
The identities are used in translating Diophantine problems connected with integral points on hyperelliptic curves into S-unit equations.
gollark: The margins of error aren't THAT narrow or the Earth would have burned up by now.
gollark: That would imply that you'd burn horribly if you jumped or went up mountains or something.
gollark: What?
gollark: Lots of things could destroy the earth, yes. Just not nuclear war.
gollark: Nuclear war is not capable of destroying the Earth, as it's quite big. A 999-magnitude earthquake would probably, as it is a log scale.
See also
- Siegel formula
References
- Baker, Alan (1975). Transcendental Number Theory. Cambridge University Press. p. 40. ISBN 0-521-20461-5. Zbl 0297.10013.
- Baker, Alan; Wüstholz, Gisbert (2007). Logarithmic Forms and Diophantine Geometry. New Mathematical Monographs. 9. Cambridge University Press. p. 53. ISBN 978-0-521-88268-2. Zbl 1145.11004.
- Kubert, Daniel S.; Lang, Serge (1981). Modular Units. Grundlehren der Mathematischen Wissenschaften. 244. ISBN 0-387-90517-0.
- Lang, Serge (1978). Elliptic Curves: Diophantine Analysis. Grundlehren der mathematischen Wissenschaften. 231. Springer-Verlag. ISBN 0-387-08489-4.
- Smart, N. P. (1998). The Algorithmic Resolution of Diophantine Equations. London Mathematical Society Student Texts. 41. Cambridge University Press. pp. 36–37. ISBN 0-521-64633-2.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.