Shell–Paques process

The Shell–Paques process, also known by the trade name of Thiopaq O&G,[1] is a gas desulfurization technology for the removal of hydrogen sulfide from natural-, refinery-, synthesis- and biogas. The process was initially named after the Shell Oil and Paques purification companies. After accession of a dedicated joint venture by the founders, Paqell B.V., the trade name for applications in the Oil & Gas industry was changed to "THIOPAQ O&G". It is based on the biocatalytical conversion of sulfide into elemental sulfur. It operates at near-ambient conditions of temperature, about 30-40 °C, and pressure which results in inherent safety. It is an alternative to, for example, the Claus process.

Process chemistry

Each reaction can be applied individually or sequentially as dictated by the characteristics of the stream to be treated. The process consist of three main sections: An absorber (gas washing section), a bioreactor (sulfide oxidation and regeneration of washing liquid) and Sulfur handling section as shown in the figure below:

The washing step uses a dilute alkaline solution to remove hydrogen sulfide (H2S) from the sour gas according to:

H2S + NaOH → NaHS + H2O

The loaded washing liquid is transported to a bioreactor where a biocatalyst oxidises the aqueous NaHS to elemental sulfur with about 95% selectivity according to:

NaHS + ½ O2 → S + NaOH

Combined reaction equation:

H2S + ½ O2 → S + H2O

The regenerated washing liquid is sent back to the washing column.

The controlled partial oxidation of sulfide to elemental sulfur (2) is catalyzed by naturally occurring microorganisms of the genus Halothiobacillus in the bioreactor. These natural, living microorganisms present in the bioreactor catalyse the sulfur conversions and are, by their nature, resilient and adaptive.

In many situations the process can be used for sulfur removal and recovery. When sulfur recovery is desired, the elemental sulfur produced in the aerobic bioreactor will be separated from the aqueous effluent in a separator inside of the reactor. The excess sulfur will be removed as aqueous slurry or cake of up to 65% dry solids content. There are several options for handling this slurry and to convert it into products for sulfuric acid generation, fertiliser or fungicide.

The system is flexible and has several processing options that have ready application in the petroleum refinery or petrochemical complex for managing a variety of sulfur-containing streams including sulfidic caustic, LPG, hydrotreater offgas and fuel gas.

gollark: JS is what you get if you put 100 language designers in a room, remove the language designers and add a bunch of monkeys with typewriters and DVORAK keyboards, and then bring the actual language designers back but force them to stick with what the monkeys wrote and only make small changes and tack on extra features after the fact, and also the language designers don't agree with each other most of the time.
gollark: Using TS means many of the errors JS wouldn't really catch except at runtime are much easier to deal with.
gollark: I like JS from an ease of development perspective, if not really a language design one.
gollark: The main thing with web is that you don't need to install anything or compile for different platforms, it just runs in a convenient browser sandbox and on basically anything modern.
gollark: Really? Hmm. This is news to me.

See also

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.