Resistance distance
In graph theory, the resistance distance between two vertices of a simple connected graph, G, is equal to the resistance between two equivalent points on an electrical network, constructed so as to correspond to G, with each edge being replaced by a 1 ohm resistance. It is a metric on graphs.
Definition
On a graph G, the resistance distance Ωi,j between two vertices vi and vj is
where , where is the Moore–Penrose inverse of the Laplacian matrix of G, is the number of vertices in G, and is the matrix containing all 1s.
Properties of resistance distance
If i = j then
For an undirected graph
General sum rule
For any N-vertex simple connected graph G = (V, E) and arbitrary N×N matrix M:
From this generalized sum rule a number of relationships can be derived depending on the choice of M. Two of note are;
where the are the non-zero eigenvalues of the Laplacian matrix. This unordered sum Σi<jΩi,j is called the Kirchhoff index of the graph.
Relationship to the number of spanning trees of a graph
For a simple connected graph G = (V, E), the resistance distance between two vertices may be expressed as a function of the set of spanning trees, T, of G as follows:
where is the set of spanning trees for the graph .
As a squared Euclidean distance
Since the Laplacian is symmetric and positive semi-definite, its pseudoinverse is also symmetric and positive semi-definite. Thus, there is a such that and we can write:
showing that the square root of the resistance distance corresponds to the Euclidean distance in the space spanned by .
Connection with Fibonacci numbers
A fan graph is a graph on vertices where there is an edge between vertex and for all and there is an edge between vertex and for all
The resistance distance between vertex and vertex is where is the -th Fibonacci number, for .[1][2]
See also
References
- Bapat, R. B.; Gupta, Somit (2010). "Resistance distance in wheels and fans". Indian Journal of Pure and Applied Mathematics. 41: 1–13. CiteSeerX 10.1.1.418.7626. doi:10.1007/s13226-010-0004-2.
- http://www.isid.ac.in/~rbb/somitnew.pdf
- Klein, D. J.; Randic, M. J. (1993). "Resistance Distance". J. Math. Chem. 12: 81–95. doi:10.1007/BF01164627.
- Gutman, Ivan; Mohar, Bojan (1996). "The quasi-Wiener and the Kirchhoff indices coincide". J. Chem. Inf. Comput. Sci. 36 (5): 982–985. doi:10.1021/ci960007t.
- Palacios, Jose Luis (2001). "Closed-form formulas for the Kirchhoff index". Int. J. Quantum Chem. 81 (2): 135–140. doi:10.1002/1097-461X(2001)81:2<135::AID-QUA4>3.0.CO;2-G.
- Babic, D.; Klein, D. J.; Lukovits, I.; Nikolic, S.; Trinajstic, N. (2002). "Resistance-distance matrix: a computational algorithm and its application". Int. J. Quantum Chem. 90 (1): 166–167. doi:10.1002/qua.10057.
- Klein, D. J. (2002). "Resistance Distance Sum Rules" (PDF). Croatica Chem. Acta. 75 (2): 633–649. Archived from the original (PDF) on 2012-03-26.
- Bapat, Ravindra B.; Gutman, Ivan; Xiao, Wenjun (2003). "A simple method for computing resistance distance". Z. Naturforsch. 58a (9–10): 494–498. Bibcode:2003ZNatA..58..494B. doi:10.1515/zna-2003-9-1003.
- Placios, Jose Luis (2004). "Foster's formulas via probability and the Kirchhoff index". Method. Comput. Appl. Probab. 6 (4): 381–387. doi:10.1023/B:MCAP.0000045086.76839.54.
- Bendito, Enrique; Carmona, Angeles; Encinas, Andres M.; Gesto, Jose M. (2008). "A formula for the Kirchhoff index". Int. J. Quantum Chem. 108 (6): 1200–1206. Bibcode:2008IJQC..108.1200B. doi:10.1002/qua.21588.
- Zhou, Bo; Trinajstic, Nenad (2009). "The Kirchhoff index and the matching number". Int. J. Quantum Chem. 109 (13): 2978–2981. Bibcode:2009IJQC..109.2978Z. doi:10.1002/qua.21915.
- Zhou, Bo; Trinajstic, Nenad (2009). "On resistance-distance and the Kirchhoff index". J. Math. Chem. 46: 283–289. doi:10.1007/s10910-008-9459-3. hdl:10338.dmlcz/140814.
- Zhou, Bo (2011). "On sum of powers of Laplacian eigenvalues and Laplacian Estrada Index of graphs". Match Commun. Math. Comput. Chem. 62: 611–619. arXiv:1102.1144.
- Zhang, Heping; Yang, Yujun (2007). "Resistance distance and Kirchhoff index in circulant graphs". Int. J. Quantum Chem. 107 (2): 330–339. Bibcode:2007IJQC..107..330Z. doi:10.1002/qua.21068.
- Yang, Yujun; Zhang, Heping (2008). "Some rules on resistance distance with applications". J. Phys. A: Math. Theor. 41 (44): 445203. Bibcode:2008JPhA...41R5203Y. doi:10.1088/1751-8113/41/44/445203.