René Piller

René Piller (born April 23, 1965 in Héricourt, Haute-Saône) is a retired male race walker from France, who competed in three Summer Olympics during his career.

Achievements

Year Competition Venue Position Event Notes
Representing  France
1989 World Race Walking Cup L'Hospitalet, Spain 12th 50 km 3:56:06
Jeux de la Francophonie Casablanca, Morocco 4th 20 km 1:35:27
1990 European Championships Split, Yugoslavia 12th 50 km 4:05:39
1991 World Race Walking Cup San Jose, United States 10th 50 km 3:55:48
World Championships Tokyo, Japan 8th 50 km 4:06:30
1992 Olympic Games Barcelona, Spain 15th 50 km 4:02:40
1993 World Race Walking Cup Monterrey, Mexico 12th 50 km 4:02:33
World Championships Stuttgart, Germany 6th 50 km 3:48:57
1994 European Championships Helsinki, Finland 50 km DQ
1995 World Race Walking Cup Beijing, PR China 7th 50 km 3:45:56
World Championships Gothenburg, Sweden 8th 50 km 3:49:47
1996 Olympic Games Atlanta, U.S. 19th 50 km 3:58:00
1997 World Championships Athens, Greece 11th 50 km 3:55:06
1998 European Championships Budapest, Hungary 9th 50 km 3:51:03
1999 World Championships Seville, Spain 9th 50 km 3:56:39
2000 European Race Walking Cup Eisenhüttenstadt, Germany 4th 50 km 3:47:49
Olympic Games Sydney, Australia 50 km DNF
2001 European Race Walking Cup Dudince, Slovakia 11th 50 km 3:52:18
World Championships Edmonton, Canada 27th 50 km 4:10:54
2002 European Championships Munich, Germany 18th 50 km 4:07:20
gollark: I didn't do any horrible homoglyph hacks with THAT.
gollark: It uses the function, yes.
gollark: So, I finished that to highly dubious demand. I'd like to know how #11 and such work.
gollark: > `x = _(int(0, e), int(e, е))`You may note that this would produce slices of 0 size. However, one of the `e`s is a homoglyph; it contains `2 * e`.`return Result[0][0], x, m@set({int(e, 0), int(е, e)}), w`From this, it's fairly obvious what `strassen` *really* does - partition `m1` into 4 block matrices of half (rounded up to the nearest power of 2) size.> `E = typing(lookup[2])`I forgot what this is meant to contain. It probably isn't important.> `def exponentiate(m1, m2):`This is the actual multiplication bit.> `if m1.n == 1: return Mаtrix([[m1.bigData[0] * m2.bigData[0]]])`Recursion base case. 1-sized matrices are merely multiplied scalarly.> `aa, ab, ac, ad = strassen(m1)`> `аa, аb, аc, аd = strassen(m2)`More use of homoglyph confusion here. The matrices are quartered.> `m = m1.subtract(exponentiate(aa, аa) ** exponentiate(ab, аc), exponentiate(aa, аb) ** exponentiate(ab, аd), exponentiate(ac, аa) ** exponentiate(ad, аc), exponentiate(ac, аb) ** exponentiate(ad, аd)) @ [-0j, int.abs(m2.n * 3, m1.n)]`This does matrix multiplication in an inefficient *recursive* way; the Strassen algorithm could save one of eight multiplications here, which is more efficient (on big matrices). It also removes the zero padding.> `m = exponentiate(Mаtrix(m1), Mаtrix(m2)) @ (0j * math.sin(math.asin(math.sin(math.asin(math.sin(math.e))))), int(len(m1), len(m1)))`This multiples them and I think also removes the zero padding again, as we want it to be really very removed.> `i += 1`This was added as a counter used to ensure that it was usably performant during development.> `math.factorial = math.sinh`Unfortunately, Python's factorial function has really rather restrictive size limits.> `for row in range(m.n):`This converts back into the 2D array format.> `for performance in sorted(dir(gc)): getattr(gc, performance)()`Do random fun things to the GC.
gollark: > `globals()[Row + Row] = random.randint(*sys.version_info[:2])`Never actually got used anywhere.> `ε = sys.float_info.epsilon`Also not used. I just like epsilons.> `def __exit__(self, _, _________, _______):`This is also empty, because cleaning up the `_` global would be silly. It'll be overwritten anyway. This does serve a purpose, however, and not just in making it usable as a context manager. This actually swallows all errors, which is used in some places.> `def __pow__(self, m2):`As ever, this is not actual exponentiation. `for i, (ι, 𐌉) in enumerate(zip(self.bigData, m2.bigData)): e.bigData[i] = ι + 𐌉` is in fact just plain and simple addition of two matrices.> `def subtract(forth, 𝕒, polynomial, c, vector_space):`This just merges 4 submatrices back into one matrix.> `with out as out, out, forth:`Apart from capturing the exceptions, this doesn't really do much either. The `_` provided by the context manager is not used.> `_(0j, int(0, 𝕒.n))`Yes, it's used in this line. However, this doesn't actually have any effect whatsoever on the execution of this. So I ignore it. It was merely a distraction.> `with Mаtrix(ℤ(ℤ(4))):`It is used again to swallow exceptions. After this is just some fluff again.> `def strassen(m, x= 3.1415935258989):`This is an interesting part. Despite being called `strassen`, it does not actually implement the Strassen algorithm, which is a somewhat more efficient way to multiply matrices than the naive way used in - as far as I can tell - every entry.> `e = 2 ** (math.ceil(math.log2(m.n)) - 1)`This gets the next power of two in a fairly obvious way. It is used to pad out the matrix to the next power of 2 size.> `with m:`The context manager is used again for nicer lookups.> `Result[0] += [_(0j, int(e, e))]`Weird pythonoquirkiness again. You can append to lists in tuples with `+=`, but it throws an exception as they're sort of immutable.> `typing(lookup[4])(input())`It's entirely possible that this does things.

References


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.