Relativistic heat conduction

Relativistic heat conduction refers to the modelling of heat conduction (and similar diffusion processes) in a way compatible with special relativity. This article discusses models using a wave equation with a dissipative term.

Heat conduction in a Newtonian context is modelled by the Fourier equation:[1]

where θ is temperature,[2] t is time, α = k/(ρ c) is thermal diffusivity, k is thermal conductivity, ρ is density, and c is specific heat capacity. The Laplace operator,, is defined in Cartesian coordinates as

This Fourier equation can be derived by substituting Fourier’s linear approximation of the heat flux vector, q, as a function of temperature gradient,

into the first law of thermodynamics

where the del operator, , is defined in 3D as

It can be shown that this definition of the heat flux vector also satisfies the second law of thermodynamics,[3]

where s is specific entropy and σ is entropy production.

Notes

  1. Carslaw, H. S.; Jaeger, J. C. (1959). Conduction of Heat in Solids (Second ed.). Oxford: University Press.
  2. Some authors also use T, φ,...
  3. Barletta, A.; Zanchini, E. (1997). "Hyperbolic heat conduction and local equilibrium: a second law analysis". International Journal of Heat and Mass Transfer. 40 (5): 1007–1016. doi:10.1016/0017-9310(96)00211-6.
  4. Eckert, E. R. G.; Drake, R. M. (1972). Analysis of Heat and Mass Transfer. Tokyo: McGraw-Hill, Kogakusha.
  5. Cattaneo, C. R. (1958). "Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée". Comptes Rendus. 247 (4): 431.
  6. Vernotte, P. (1958). "Les paradoxes de la theorie continue de l'équation de la chaleur". Comptes Rendus. 246 (22): 3154.
  7. Chester, M. (1963). "Second sound in solids". Physical Review. 131 (15): 2013–2015. Bibcode:1963PhRv..131.2013C. doi:10.1103/PhysRev.131.2013.
  8. Morse, P. M.; Feshbach, H. (1953). Methods of Theoretical Physics. New York: McGraw-Hill.
  9. Mandrusiak, G. D. (1997). "Analysis of non-Fourier conduction waves from a reciprocating heat source". Journal of Thermophysics and Heat Transfer. 11 (1): 82–89. doi:10.2514/2.6204.
  10. Xu, M.; Wang, L. (2002). "Thermal oscillation and resonance in dual-phase-lagging heat conduction". International Journal of Heat and Mass Transfer. 45 (5): 1055–1061. doi:10.1016/S0017-9310(01)00199-5.
  11. Barletta, A.; Zanchini, E. (1996). "Hyperbolic heat conduction and thermal resonances in a cylindrical solid carrying a steady periodic electric field". International Journal of Heat and Mass Transfer. 39 (6): 1307–1315. doi:10.1016/0017-9310(95)00202-2.
  12. Tzou, D. Y. (1989). "Shock wave formation around a moving heat source in a solid with finite speed of heat propagation". International Journal of Heat and Mass Transfer. 32 (10): 1979–1987. doi:10.1016/0017-9310(89)90166-X.
gollark: utilize this hello world program
gollark: Go whom yourself.
gollark: What *other* weird rules does English have which we intuitively process but which are hard and stupid?
gollark: I'm updating my user page.
gollark: ah yesR Ü S T

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.