Reflective subcategory

In mathematics, a full subcategory A of a category B is said to be reflective in B when the inclusion functor from A to B has a left adjoint. This adjoint is sometimes called a reflector, or localization.[1] Dually, A is said to be coreflective in B when the inclusion functor has a right adjoint.

Informally, a reflector acts as a kind of completion operation. It adds in any "missing" pieces of the structure in such a way that reflecting it again has no further effect.

Definition

A full subcategory A of a category B is said to be reflective in B if for each B-object B there exists an A-object and a B-morphism such that for each B-morphism to an A-object there exists a unique A-morphism with .

The pair is called the A-reflection of B. The morphism is called the A-reflection arrow. (Although often, for the sake of brevity, we speak about only as being the A-reflection of B).

This is equivalent to saying that the embedding functor is a right adjoint. The left adjoint functor is called the reflector. The map is the unit of this adjunction.

The reflector assigns to the A-object and for a B-morphism is determined by the commuting diagram

If all A-reflection arrows are (extremal) epimorphisms, then the subcategory A is said to be (extremal) epireflective. Similarly, it is bireflective if all reflection arrows are bimorphisms.

All these notions are special case of the common generalization-reflective subcategory, where is a class of morphisms.

The -reflective hull of a class A of objects is defined as the smallest -reflective subcategory containing A. Thus we can speak about reflective hull, epireflective hull, extremal epireflective hull, etc.

An anti-reflective subcategory is a full subcategory A such that the only objects of B that have an A-reflection arrow are those that are already in A.

Dual notions to the above-mentioned notions are coreflection, coreflection arrow, (mono)coreflective subcategory, coreflective hull, anti-coreflective subcategory.

Examples

Algebra

Topology

Functional analysis

  • The category of Banach spaces is a reflective subcategory of the category of normed spaces and bounded linear operators. The reflector is the norm completion functor.

Category theory

  • For any Grothendieck site (C, J), the topos of sheaves on (C, J) is a reflective subcategory of the topos of presheaves on C, with the special further property that the reflector functor is left exact. The reflector is the sheafification functor a : Presh(C) → Sh(C, J), and the adjoint pair (a, i) is an important example of a geometric morphism in topos theory.

Properties

  • The components of the counit are isomorphisms.[1]:140[4]
  • If D is a reflective subcategory of C, then the inclusion functor DC creates all limits that are present in C.[1]:141
  • A reflective subcategory has all colimits that are present in the ambient category.[1]:141
  • The monad induced by the reflector/localization adjunction is idempotent.[1]:158

Notes

  1. Riehl, Emily (2017-03-09). Category theory in context. Mineola, New York. p. 140. ISBN 9780486820804. OCLC 976394474.
  2. Lawson (1998), p. 63, Theorem 2.
  3. "coreflective subcategory in nLab". ncatlab.org. Retrieved 2019-04-02.
  4. Mac Lane, Saunders, 1909-2005. (1998). Categories for the working mathematician (2nd ed.). New York: Springer. p. 89. ISBN 0387984038. OCLC 37928530.CS1 maint: multiple names: authors list (link)
gollark: Beat = Host confirmed?
gollark: And yet.
gollark: Guess better.
gollark: You wouldn't, but you don't need that.
gollark: You know, if you didn't say that, you probably could have anonymously messaged.

References

  • Adámek, Jiří; Horst Herrlich; George E. Strecker (1990). Abstract and Concrete Categories (PDF). New York: John Wiley & Sons.
  • Peter Freyd, Andre Scedrov (1990). Categories, Allegories. Mathematical Library Vol 39. North-Holland. ISBN 978-0-444-70368-2.
  • Herrlich, Horst (1968). Topologische Reflexionen und Coreflexionen. Lecture Notes in Math. 78. Berlin: Springer.
  • Mark V. Lawson (1998). Inverse semigroups: the theory of partial symmetries. World Scientific. ISBN 978-981-02-3316-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.