Quasi-analytic function

In mathematics, a quasi-analytic class of functions is a generalization of the class of real analytic functions based upon the following fact: If f is an analytic function on an interval [a,b]  R, and at some point f and all of its derivatives are zero, then f is identically zero on all of [a,b]. Quasi-analytic classes are broader classes of functions for which this statement still holds true.

Definitions

Let be a sequence of positive real numbers. Then the Denjoy-Carleman class of functions CM([a,b]) is defined to be those f  C([a,b]) which satisfy

for all x  [a,b], some constant A, and all non-negative integers k. If Mk = 1 this is exactly the class of real analytic functions on [a,b].

The class CM([a,b]) is said to be quasi-analytic if whenever f  CM([a,b]) and

for some point x  [a,b] and all k, then f is identically equal to zero.

A function f is called a quasi-analytic function if f is in some quasi-analytic class.

Quasi-analytic functions of several variables

For a function and multi-indexes , denote , and

and

Then is called quasi-analytic on the open set if for every compact there is a constant such that

for all multi-indexes and all points .

The Denjoy-Carleman class of functions of variables with respect to the sequence on the set can be denoted , although other notations abound.

The Denjoy-Carleman class is said to be quasi-analytic when the only function in it having all its partial derivatives equal to zero at a point is the function identically equal to zero.

A function of several variables is said to be quasi-analytic when it belongs to a quasi-analytic Denjoy-Carleman class.

Quasi-analytic classes with respect to logarithmically convex sequences

In the definitions above it is possible to assume that and that the sequence is non-decreasing.

The sequence is said to be logarithmically convex, if

is increasing.

When is logarithmically convex, then is increasing and

for all .

The quasi-analytic class with respect to a logarithmically convex sequence satisfies:

  • is a ring. In particular it is closed under multiplication.
  • is closed under composition. Specifically, if and , then .

The Denjoy–Carleman theorem

The Denjoy–Carleman theorem, proved by Carleman (1926) after Denjoy (1921) gave some partial results, gives criteria on the sequence M under which CM([a,b]) is a quasi-analytic class. It states that the following conditions are equivalent:

  • CM([a,b]) is quasi-analytic.
  • where .
  • , where Mj* is the largest log convex sequence bounded above by Mj.

The proof that the last two conditions are equivalent to the second uses Carleman's inequality.

Example: Denjoy (1921) pointed out that if Mn is given by one of the sequences

then the corresponding class is quasi-analytic. The first sequence gives analytic functions.

Additional properties

For a logarithmically convex sequence the following properties of the corresponding class of functions hold:

  • contains the analytic functions, and it is equal to it if and only if
  • If is another logarithmically convex sequence, with for some constant , then .
  • is stable under differentiation if and only if .
  • For any infinitely differentiable function there are quasi-analytic rings and and elements , and , such that .

Weierstrass division

A function is said to be regular of order with respect to if and . Given regular of order with respect to , a ring of real or complex functions of variables is said to satisfy the Weierstrass division with respect to if for every there is , and such that

with .

While the ring of analytic functions and the ring of formal power series both satisfy the Weierstrass division property, the same is not true for other quasi-analytic classes.

If is logarithmically convex and is not equal to the class of analytic function, then doesn't satisfy the Weierstrass division property with respect to .

gollark: I agree.
gollark: The lunar rift and taint spread incident was an accident. Bee you.
gollark: Just clone yourself?
gollark: Generally.
gollark: Yes?

References

  • Carleman, T. (1926), Les fonctions quasi-analytiques, Gauthier-Villars
  • Cohen, Paul J. (1968), "A simple proof of the Denjoy-Carleman theorem", The American Mathematical Monthly, Mathematical Association of America, 75 (1): 26–31, doi:10.2307/2315100, ISSN 0002-9890, JSTOR 2315100, MR 0225957
  • Denjoy, A. (1921), "Sur les fonctions quasi-analytiques de variable réelle", C. R. Acad. Sci. Paris, 173: 1329–1331
  • Hörmander, Lars (1990), The Analysis of Linear Partial Differential Operators I, Springer-Verlag, ISBN 3-540-00662-1
  • Leont'ev, A.F. (2001) [1994], "Quasi-analytic class", Encyclopedia of Mathematics, EMS Press
  • Solomentsev, E.D. (2001) [1994], "Carleman theorem", Encyclopedia of Mathematics, EMS Press
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.