Quantum invariant
In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.[1] [2] [3]
List of invariants
- Finite type invariant
- Kontsevich invariant
- Kashaev's invariant
- Witten–Reshetikhin–Turaev invariant (Chern–Simons)
- Invariant differential operator[4]
- Rozansky–Witten invariant
- Vassiliev knot invariant
- Dehn invariant
- LMO invariant [5]
- Turaev–Viro invariant
- Dijkgraaf–Witten invariant [6]
- Reshetikhin–Turaev invariant
- Tau-invariant
- I-Invariant
- Klein J-invariant
- Quantum isotopy invariant [7]
- Ermakov–Lewis invariant
- Hermitian invariant
- Goussarov–Habiro theory of finite-type invariant
- Linear quantum invariant (orthogonal function invariant)
- Murakami–Ohtsuki TQFT
- Generalized Casson invariant
- Casson-Walker invariant
- Khovanov–Rozansky invariant
- HOMFLY polynomial
- K-theory invariants
- Atiyah–Patodi–Singer eta invariant
- Link invariant [8]
- Casson invariant
- Seiberg–Witten invariant
- Gromov–Witten invariant
- Arf invariant
- Hopf invariant
gollark: Otherwise it would be nice to have something to stop me flying stupidly fast at walls.
gollark: It's irritating that there's not room in my neural interface for a block scanner.
gollark: My thing just tries to slow you down all the time if you're going downward fast. Which mostly works with hover boots.
gollark: My flight script used to detect the ground, but it was far too slow.
gollark: Collision avoidance? How does that work?
See also
References
- Reshetikhin, N. & Turaev, V. (1991). "Invariants of 3-manifolds via link polynomials and quantum groups". Invent. Math. 103 (1): 547. Bibcode:1991InMat.103..547R. doi:10.1007/BF01239527.
- Kontsevich, Maxim (1993). "Vassiliev's knot invariants". Adv. Soviet Math. 16: 137.
- Watanabe, Tadayuki (2007). "Knotted trivalent graphs and construction of the LMO invariant from triangulations". Osaka J. Math. 44 (2): 351. Retrieved 4 December 2012.
- Letzter, Gail (2004). "Invariant differential operators for quantum symmetric spaces, II". arXiv:math/0406194.
- Sawon, Justin (2000). "Topological quantum field theory and hyperkähler geometry". arXiv:math/0009222.
- "Data" (PDF). hal.archives-ouvertes.fr. 1999. Retrieved 2019-11-04.
- "Invariants of 3-manifolds via link polynomials and quantum groups - Springer".
Further reading
- Freedman, Michael H. (1990). Topology of 4-manifolds. Princeton, N.J: Princeton University Press. ISBN 978-0691085777. OL 2220094M.
- Ohtsuki, Tomotada (December 2001). Quantum Invariants. World Scientific Publishing Company. ISBN 9789810246754. OL 9195378M.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.