q-gamma function

In q-analog theory, the -gamma function, or basic gamma function, is a generalization of the ordinary Gamma function closely related to the double gamma function. It was introduced by Jackson (1905). It is given by

when , and

if . Here is the infinite q-Pochhammer symbol. The -gamma function satisfies the functional equation

In addition, the -gamma function satisfies the q-analog of the Bohr–Mollerup theorem, which was found by Richard Askey (Askey (1978)).
For non-negative integers n,

where is the q-factorial function. Thus the -gamma function can be considered as an extension of the q-factorial function to the real numbers.

The relation to the ordinary gamma function is made explicit in the limit

There is a simple proof of this limit by Gosper. See the appendix of (Andrews (1986)).

Transformation Properties

The -gamma function satisfies the q-analog of the Gauss multiplication formula (Gasper & Rahman (2004)):

Integral Representation

The -gamma function has the following integral representation (Ismail (1981)):

Stirling Formula

Moak obtained the following q-analogue of the Stirling formula (see Moak (1984)):

where , denotes the Heaviside step function, stands for the Bernoulli number, is the dilogarithm, and is a polynomial of degree satisfying

Raabe-type formulas

Due to I. Mező, the q-analogue of the Raabe formula exists, at least if we use the q-gamma function when . With this restriction

El Bachraoui considered the case and proved that

Special values

The following special values are known.[1]

These are the analogues of the classical formula .

Moreover, the following analogues of the familiar identity hold true:

Matrix Version

Let be a complex square matrix and Positive-definite matrix. Then a q-gamma matrix function can be defined by q-integral:[2]

where is the q-exponential function.

Other q-Gamma Functions

For other q-gamma functions, see Yamasaki 2006.[3]

Numerical Computation

An iterative algorithm to compute the q-gamma function was proposed by Gabutti and Allasia.[4]

Further reading

  • Zhang, Ruiming (2007), "On asymptotics of q-gamma functions", Journal of Mathematical Analysis and Applications, 339 (2): 1313–1321, arXiv:0705.2802, Bibcode:2008JMAA..339.1313Z, doi:10.1016/j.jmaa.2007.08.006
  • Zhang, Ruiming (2010), "On asymptotics of Γq(z) as q approaching 1", arXiv:1011.0720 [math.CA]
  • Ismail, Mourad E. H.; Muldoon, Martin E. (1994), "Inequalities and monotonicity properties for gamma and q-gamma functions", in Zahar, R. V. M. (ed.), Approximation and computation a festschrift in honor of Walter Gautschi: Proceedings of the Purdue conference, December 2-5, 1993, 119, Boston: Birkhäuser Verlag, pp. 309–323, arXiv:1301.1749, doi:10.1007/978-1-4684-7415-2_19, ISBN 978-1-4684-7415-2
gollark: That sounds mean.
gollark: Apiophobia would be bigoted, see.
gollark: That was 3 ± 2 days ago.
gollark: Except to some exotic timing channel attacks, but we can just run them in a slower mode to mitigate those if needed.
gollark: Our simulations are very good. Indistinguishable from reality, even.

References

  • Jackson, F. H. (1905), "The Basic Gamma-Function and the Elliptic Functions", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, The Royal Society, 76 (508): 127–144, Bibcode:1905RSPSA..76..127J, doi:10.1098/rspa.1905.0011, ISSN 0950-1207, JSTOR 92601
  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
  • Ismail, Mourad (1981), "The Basic Bessel Functions and Polynomials", SIAM Journal on Mathematical Analysis, 12 (3): 454–468, doi:10.1137/0512038
  • Moak, Daniel S. (1984), "The Q-analogue of Stirling's formula", Rocky Mountain J. Math., 14 (2): 403–414, doi:10.1216/RMJ-1984-14-2-403
  • Mező, István (2012), "A q-Raabe formula and an integral of the fourth Jacobi theta function", Journal of Number Theory, 133 (2): 692–704, doi:10.1016/j.jnt.2012.08.025
  • El Bachraoui, Mohamed (2017), "Short proofs for q-Raabe formula and integrals for Jacobi theta functions", Journal of Number Theory, 173 (2): 614–620, doi:10.1016/j.jnt.2016.09.028
  • Askey, Richard (1978), "The q-gamma and q-beta functions.", Applicable Analysis, 8 (2): 125–141, doi:10.1080/00036817808839221
  • Andrews, George E. (1986), q-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra., Regional Conference Series in Mathematics, 66, American Mathematical Society
Notes
  1. Mező, István (2011), "Several special values of Jacobi theta functions", arXiv:1106.1042 [math.NT]
  2. Salem, Ahmed (June 2012). "On a q-gamma and a q-beta matrix functions". Linear and Multilinear Algebra. 60 (6): 683–696. doi:10.1080/03081087.2011.627562.
  3. Yamasaki, Yoshinori (December 2006). "On q-Analogues of the Barnes Multiple Zeta Functions". Tokyo Journal of Mathematics. 29 (2): 413–427. arXiv:math/0412067. doi:10.3836/tjm/1170348176. MR 2284981. Zbl 1192.11060.
  4. Gabutti, Bruno; Allasia, Giampietro (17 September 2008). "Evaluation of q-gamma function and q-analogues by iterative algorithms". Numerical Algorithms. 49 (1–4): 159–168. Bibcode:2008NuAlg..49..159G. doi:10.1007/s11075-008-9196-5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.