q-Gaussian process
q-Gaussian processes are deformations of the usual Gaussian distribution. There are several different versions of this; here we treat a multivariate deformation, also addressed as q-Gaussian process, arising from free probability theory and corresponding to deformations of the canonical commutation relations. For other deformations of Gaussian distributions, see q-Gaussian distribution and Gaussian q-distribution.
References
- Frisch, U.; Bourret, R. (February 1970). "Parastochastics". Journal of Mathematical Physics. 11 (2): 364–390. doi:10.1063/1.1665149.
- Greenberg, O. W. (12 February 1990). "Example of infinite statistics". Physical Review Letters. 64 (7): 705–708. doi:10.1103/PhysRevLett.64.705.
- Bożejko, Marek; Speicher, Roland (April 1991). "An example of a generalized Brownian motion". Communications in Mathematical Physics. 137 (3): 519–531. doi:10.1007/BF02100275.
- Bożejko, M.; Kümmerer, B.; Speicher, R. (1 April 1997). "q-Gaussian Processes: Non-commutative and Classical Aspects". Communications in Mathematical Physics. 185 (1): 129–154. arXiv:funct-an/9604010. doi:10.1007/s002200050084.
- Effros, Edward G.; Popa, Mihai (22 July 2003). "Feynman diagrams and Wick products associated with q-Fock space". Proceedings of the National Academy of Sciences. 100 (15): 8629–8633. doi:10.1073/pnas.1531460100.
- Zagier, Don (June 1992). "Realizability of a model in infinite statistics". Communications in Mathematical Physics. 147 (1): 199–210. CiteSeerX 10.1.1.468.966. doi:10.1007/BF02099535.
- Kennedy, Matthew; Nica, Alexandru (9 September 2011). "Exactness of the Fock Space Representation of the q-Commutation Relations". Communications in Mathematical Physics. 308 (1): 115–132. arXiv:1009.0508. doi:10.1007/s00220-011-1323-9.
- Vergès, Matthieu Josuat (20 November 2018). "Cumulants of the q-semicircular Law, Tutte Polynomials, and Heaps". Canadian Journal of Mathematics. 65 (4): 863–878. arXiv:1203.3157. doi:10.4153/CJM-2012-042-9.
- Bryc, Włodzimierz; Wang, Yizao (24 February 2016). "The local structure of q-Gaussian processes". arXiv:1511.06667. Cite journal requires
|journal=
(help) - Leeuwen, Hans van; Maassen, Hans (September 1995). "A q deformation of the Gauss distribution". Journal of Mathematical Physics. 36 (9): 4743–4756. doi:10.1063/1.530917. hdl:2066/141604.
- Szegö, G (1926). "Ein Beitrag zur Theorie der Thetafunktionen" [A contribution to the theory of theta functions]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Phys.-Math. Klasse (in German): 242–252.
- Wasilewski, Mateusz (24 February 2020). "A simple proof of the complete metric approximation property for q-Gaussian algebras". arXiv:1907.00730. Cite journal requires
|journal=
(help) - Guionnet, A.; Shlyakhtenko, D. (13 November 2013). "Free monotone transport". Inventiones mathematicae. 197 (3): 613–661. arXiv:1204.2182. doi:10.1007/s00222-013-0493-9.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.