Pugh's closing lemma

In mathematics, Pugh's closing lemma is a result that links periodic orbit solutions of differential equations to chaotic behaviour. It can be formally stated as follows:

Let be a diffeomorphism of a compact smooth manifold . Given a nonwandering point of , there exists a diffeomorphism arbitrarily close to in the topology of such that is a periodic point of .[1]

Interpretation

Pugh's closing lemma means, for example, that any chaotic set in a bounded continuous dynamical system corresponds to a periodic orbit in a different but closely related dynamical system. As such, an open set of conditions on a bounded continuous dynamical system that rules out periodic behaviour also implies that the system cannot behave chaotically; this is the basis of some autonomous convergence theorems.

gollark: Nobody particularly *wants* to do it, but if you don't have a military you'll be left at a disadvantage.
gollark: It's one of those zero-sum/negative-sum things.
gollark: > less than half of people who attempt a bachelor's degree actually graduate, and the majority of those degrees don't actually help you get a jobVery late, but this seems like a USism. I think UK completion rates are 90%ish.
gollark: Wow, that is a surprisingly well-put-together video.
gollark: Can someone link the original video? I ignore HV mostly but it sounds funny.

See also

References

  1. Pugh, Charles C. (1967). "An Improved Closing Lemma and a General Density Theorem". American Journal of Mathematics. 89 (4): 1010–1021. doi:10.2307/2373414. JSTOR 2373414.

Further reading

  • Araújo, Vítor; Pacifico, Maria José (2010). Three-Dimensional Flows. Berlin: Springer. ISBN 978-3-642-11414-4.

This article incorporates material from Pugh's closing lemma on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.