Pseudo-monotone operator

In mathematics, a pseudo-monotone operator from a reflexive Banach space into its continuous dual space is one that is, in some sense, almost as well-behaved as a monotone operator. Many problems in the calculus of variations can be expressed using operators that are pseudo-monotone, and pseudo-monotonicity in turn implies the existence of solutions to these problems.

Definition

Let (X, || ||) be a reflexive Banach space. A map T : X  X from X into its continuous dual space X is said to be pseudo-monotone if T is a bounded operator (not necessarily continuous) and if whenever

(i.e. uj converges weakly to u) and

it follows that, for all v  X,

Properties of pseudo-monotone operators

Using a very similar proof to that of the Browder-Minty theorem, one can show the following:

Let (X, || ||) be a real, reflexive Banach space and suppose that T : X  X is bounded, coercive and pseudo-monotone. Then, for each continuous linear functional g  X, there exists a solution u  X of the equation T(u) = g.

gollark: Well, I'll remove you from the suspected sentient ant list.
gollark: Oh, phones, of course.
gollark: Unfortunately, things.
gollark: Anyway, what would be quite cool is if consumer AR glasses ever actually happened, so you could get a convenient overlay from infrared cameras and time of flight sensors when it was dark.
gollark: It's not pizza, it's hyperbolic geometry.

References

  • Renardy, Michael & Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second ed.). New York: Springer-Verlag. p. 367. ISBN 0-387-00444-0. (Definition 9.56, Theorem 9.57)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.