Pseudo-Zernike polynomials

In mathematics, pseudo-Zernike polynomials are well known and widely used in the analysis of optical systems. They are also widely used in image analysis as shape descriptors.

Definition

They are an orthogonal set of complex-valued polynomials defined as

where and orthogonality on the unit disk is given as

where the star means complex conjugation, and , , are the standard transformations between polar and Cartesian coordinates.

The radial polynomials are defined as[1]

with integer coefficients

Examples

Examples are:

Moments

The pseudo-Zernike Moments (PZM) of order and repetition are defined as

where , and takes on positive and negative integer values subject to .

The image function can be reconstructed by expansion of the pseudo-Zernike coefficients on the unit disk as

Pseudo-Zernike moments are derived from conventional Zernike moments and shown to be more robust and less sensitive to image noise than the Zernike moments.[1]

gollark: Well, strings are immutable.
gollark: Play along.
gollark: Perhaps... you should not.
gollark: Is DnD not just mostly based on having people say things to other people? What setup would you want?
gollark: No, you just click the create server button.

See also

References

  1. Teh, C.-H.; Chin, R. (1988). "On image analysis by the methods of moments". IEEE Transactions on Pattern Analysis and Machine Intelligence. 10 (4): 496–513. doi:10.1109/34.3913.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.