Prüfer rank

In mathematics, especially in the area of algebra known as group theory, the Prüfer rank of a pro-p group measures the size of a group in terms of the ranks of its elementary abelian sections.[1] The rank is well behaved and helps to define analytic pro-p-groups. The term is named after Heinz Prüfer.

Definition

The Prüfer rank of pro-p-group is

where is the rank of the abelian group

,

where is the Frattini subgroup of .

As the Frattini subgroup of can be thought of as the group of non-generating elements of , it can be seen that will be equal to the size of any minimal generating set of .

Properties

Those profinite groups with finite Prüfer rank are more amenable to analysis.

Specifically in the case of finitely generated pro-p groups, having finite Prüfer rank is equivalent to having an open normal subgroup that is powerful. In turn these are precisely the class of pro-p groups that are p-adic analytic - that is groups that can be imbued with a p-adic manifold structure.

gollark: ++exec```pythonprint("<:Thonk:445016973798014987><:Thonkdown:433149076721238016>" * 50)```
gollark: ++exec```pythonprint("<:Thonk:445016973798014987><:Thonkdown:433149076721238016>" * 50)```
gollark: ++exec```pythonprint("<:Thonk:445016973798014987><:Thonkdown:433149076721238016>" * 50)```
gollark: ++exec```pythonprint("<:Thonk:445016973798014987><:Thonkdown:433149076721238016>" * 50)```
gollark: ++exec```pythonprint("<:Thonk:445016973798014987><:Thonkdown:433149076721238016>" * 50)```

References

  1. Yamagishi, Masakazu (2007), "An analogue of the Nielsen-Schreier formula for pro-p-groups", Archiv der Mathematik, 88 (4): 304–315, doi:10.1007/s00013-006-1878-4, MR 2311837, Zbl 1119.20035.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.