Polynomial decomposition

In mathematics, a polynomial decomposition expresses a polynomial f as the functional composition of polynomials g and h, where g and h have degree greater than 1; it is a purely algebraic functional decomposition. Algorithms are known for decomposing polynomials in polynomial time.

Polynomials which are decomposable in this way are composite polynomials; those which are not are prime or indecomposable polynomials[1] (not to be confused with irreducible polynomials, which cannot be factored into products of polynomials).

Examples

In the simplest case, one of the polynomials is a monomial. For example,

decomposes into

since

Less trivially,

Uniqueness

A polynomial may have distinct decompositions into indecomposable polynomials where where for some . The restriction in the definition to polynomials of degree greater than one excludes the infinitely many decompositions possible with linear polynomials.

Joseph Ritt proved that , and the degrees of the components are the same, but possibly in different order; this is Ritt's polynomial decomposition theorem.[1][2] For example, .

Applications

A polynomial decomposition may enable more efficient evaluation of a polynomial. For example,

can be calculated with only 3 multiplications using the decomposition, while Horner's method would require 7.

A polynomial decomposition enables calculation of symbolic roots using radicals, even for some irreducible polynomials. This technique is used in many computer algebra systems.[3] For example, using the decomposition

the roots of this irreducible polynomial can be calculated as

.[4]

Even in the case of quartic polynomials, where there is an explicit formula for the roots, solving using the decomposition often gives a simpler form. For example, the decomposition

gives the roots

[4]

but straightforward application of the quartic formula gives equivalent results but in a form that is difficult to simplify and difficult to understand:

.

Algorithms

The first algorithm for polynomial decomposition was published in 1985,[5] though it had been discovered in 1976[6] and implemented in the Macsyma computer algebra system.[7] That algorithm takes worst-case exponential time but works independently of the characteristic of the underlying field.

More recent algorithms run in polynomial time but with restrictions on the characteristic.[8]

The most recent algorithm calculates a decomposition in polynomial time and without restrictions on the characteristic.[9]

Notes

  1. J.F. Ritt, "Prime and Composite Polynomials", Transactions of the American Mathematical Society 23:1:51–66 (January, 1922) doi:10.2307/1988911 JSTOR 1988911
  2. Capi Corrales-Rodrigáñez, "A note on Ritt's theorem on decomposition of polynomials", Journal of Pure and Applied Algebra 68:3:293–296 (6 December 1990) doi:10.1016/0022-4049(90)90086-W
  3. The examples below were calculated using Maxima.
  4. Where each ± is taken independently.
  5. David R. Barton, Richard Zippel, "Polynomial Decomposition Algorithms", Journal of Symbolic Computation 1:159–168 (1985)
  6. Richard Zippel , "Functional Decomposition" (1996) full text
  7. Available in its open-source successor, Maxima, see the polydecomp function
  8. Dexter Kozen, Susan Landau, "Polynomial Decomposition Algorithms", Journal of Symbolic Computation 7:445–456 (1989)
  9. Raoul Blankertz, "A polynomial time algorithm for computing all minimal decompositions of a polynomial", ACM Communications in Computer Algebra 48:1 (Issue 187, March 2014) full text Archived 2015-09-24 at the Wayback Machine
gollark: It's somewhat more complex, but essentially yes.
gollark: The Turing machines are coming for you.
gollark: It has begun.
gollark: ```javascriptlet beeNeuronData = 3const doThing = () => { beeNeuronData += 4 console.log(beeNeuronData)}doThing()doThing()doThing()```
gollark: Doesn't it already *do* this?

References

  • Joel S. Cohen, "Polynomial Decomposition", Chapter 5 of Computer Algebra and Symbolic Computation, 2003, ISBN 1-56881-159-4
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.