Phloretic acid

Phloretic acid is an organic compound with the formula HOC6H4(CH2)2CO2H. It is a white solid. The compound contains both phenol and carboxylic acid functional groups. It is sometimes called Desaminotyrosine (DAT) because it is identical to the common alpha amino acid tyrosine except for the absence of the amino functional group on the alpha carbon.

Phloretic acid
Names
IUPAC name
3-(4-Hydroxyphenyl)propanoic acid
Other names
3-(4-Hydroxyphenyl)propanoic acid
Desaminotyrosine
Hydro-p-coumaric acid
Phloretate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.007.211
EC Number
  • 207-931-3
KEGG
MeSH C008869
UNII
Properties
C9H10O3
Molar mass 166.176 g·mol−1
Melting point 129 °C (264 °F; 402 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Production and occurrence

Phloretic acid is produced by reduction of the unsaturated side chain of p-coumaric acid. Together with phloroglucinol, it is produced by the action of the enzyme phloretin hydrolase on phloretin.

It is found in olives.[1] It is found in the rumen of sheep fed with dried grass.[2] It is also an urinary metabolite of tyrosine in rats.[3]

Polyesters have been prepared from phloretic acid.[4]

It is one of the products of flavonoid metabolism performed by the bacterium Clostridium orbiscindens, a resident of some human guts. [5]

gollark: YES!
gollark: ~ping
gollark: <@509849474647064576>
gollark: ```Y'allEver hear of a cool language?It goes a little likefibs = 0 : 1 : zipWith (+) fibs (tail fibs)Oh, you didn't understand that?ExactlyHaskell is the worstWorse than this verseIf you use Haskell, reverseI just rhymed reverse with verseHaskell is still worse than this verseThose who use Haskell, let me enlighten youHaskell is the only language that can't shine a light on youWhy? Because that's IO (oh)Haskell has a successor functionWhat a coincidence, because it sucksLet me introduce you to my friend FoopyFoopy's my own language, it's everything Haskell couldn't doHey, Foopy, my main man?Foopy: Yeah, dude?You suck too!Foopy is impossible to useFunctional programming's like boozeWith objects you can't loseHaskell's the worst, Foopy's the worst, OOP is the wayFP's the worstWorse than this verseIf you use FP, reverseI just rhymed reverse with verseFP is still worse than this verseLemme introduce some morePython, Rust, Ruby, these aren't choresRust's the ultimate high-level languageIt's taking the world by stormPython and Ruby are your Swiss army knivesAlways there when you need them mostThese languages are beautiful in their simplicityBeautiful in their complexityHaskell only has complexityUgly complexityHard to use, hard to learnHaskell is the worstWorse than this verseIf you use Haskell, reverseI just rhymed reverse with verseHaskell is still worse than this verse```From the Esolangs server.
gollark: I mean, it's probably right, but not much use.

References

  1. Owen, R.W; Haubner, R.; Mier, W.; Giacosa, A.; Hull, W.E; Spiegelhalder, B.; Bartsch, H. (2003). "Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes". Food and Chemical Toxicology. 41 (5): 703–717. doi:10.1016/S0278-6915(03)00011-5. PMID 12659724.
  2. Chesson, A; Stewart, CS; Wallace, RJ (1982). "Influence of plant phenolic acids on growth and cellulolytic activity of rumen bacteria". Applied and Environmental Microbiology. 44 (3): 597–603. PMC 242064. PMID 16346090.
  3. Booth AN, Masri MS, Robbins DJ, Emerson OH, Jones FT, Deeds F (1960). "Urinary phenolic acid metabolities of tyrosine". Journal of Biological Chemistry. 235 (9): 2649–2652.
  4. Reina, Antonio; Gerken, Andreas; Zemann, Uwe; Kricheldorf, Hans R. (1999). "New polymer syntheses, 101. Liquid-crystalline hyperbranched and potentially biodegradable polyesters based on phloretic acid and gallic acid". Macromolecular Chemistry and Physics. 200 (7): 1784–1791. doi:10.1002/(SICI)1521-3935(19990701)200:7<1784::AID-MACP1784>3.0.CO;2-B.
  5. Schoefer, Lilian; Mohan, Ruchika; Schwiertz, Andreas; Braune, Annett; Blaut, Michael (2003). "Anaerobic Degradation of Flavonoids by Clostridium orbiscindens". Appl Environ Microbiol. 69 (10): 5849–5854. doi:10.1128/AEM.69.10.5849-5854.2003. PMID 14532034.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.