Peter E. Toschek

Peter E. Toschek (18 April 1933 – 25 June 2020[1]) was a German experimental physicist who researched nuclear physics, quantum optics, and laser physics. He is known as a pioneer of laser spectroscopy and for the first demonstration of single trapped atoms (ions). He was a professor at Hamburg University.

Peter Toschek
Born(1933-04-18)18 April 1933
Died25 June 2020(2020-06-25) (aged 87)
Hamburg
Nationality Germany
EducationUniversity of Bonn
University of Göttingen
Known forlaser spectroscopy, singular ions
AwardsRobert Wichard Pohl Prize (1990)
Robert Walther Award (2015)
Scientific career
Fieldsphysics
InstitutionsInstitute for Laser Physics, University of Hamburg
Doctoral advisorWolfgang Paul

Biography

Toschek studied physics in Göttingen and Bonn. Supervised by Wolfgang Paul, he defended his Ph.D. thesis in 1961. The topic of his dissertation was the scattering of Gallium atoms in defined Zeeman states by Argon and Helium. In 1963 he became a research assistant at the Institute for Applied Physics at Heidelberg University. There he founded the first German research group for laser spectroscopy which was soon joined by Theodor Hänsch (doctorate 1969). Toschek completed his habilitation in experimental physics in 1968. In 1972 he became a Professor at Heidelberg. In 1981 he accepted a chair in experimental physics at the University of Hamburg. There he and Günter Huber founded the Institute for Laser Physics in 1989. From 1980 to 1990 Toschek co-edited Optics Communications. Peter Toschek worked at Stanford University with Tony Siegman (1972), at the Laboratoire Aimé Cotton in Orsay, France, (1978/79), and as a Fellow of the Joint Institute for Laboratory Astrophysics (JILA) in Boulder, Colorado (1986/87). He retired in 1998 but continued to be a scientifically active part of the Institute for Laser Physics.

Research

Since the 1960s, Peter Toschek and his associates developed new methods of laser spectroscopy like Doppler-free saturation spectroscopy [2][3][4] as well as the extremely sensitive intra-cavity absorption spectroscopy (ICAS).[5][6] They observed non-linear interactions of light with atoms [7][8] like self-induced transparency of an absorber, and like the generation of singular optical oscillations (solitons).[9] In 1978, Toschek‘s research group was the first to demonstrate the cooling of atoms by laser light,[10] just before David Wineland and co-workers. After Peter Toschek and Hans Georg Dehmelt having proposed, in 1975, a scheme for the realization and observation of single atomic ions,[11] Werner Neuhauser, Martin Hohenstatt and Peter Toschek in 1978 demonstrated, for the first time, the trapping and visual observation of a single atom, a Barium ion, which had been cooled by laser light down to a few mK above absolute zero temperature, and confined within a miniature quadrupole ion trap.[12] This achievement made feasible the manipulation, quantum measurement and spectroscopy of individual atomic ions.[13] On such quantum objects Toschek and associates observed for the first time and reported in 1986 Niels Bohr's metaphorical "quantum jumps",[14] simultaneously with and independent of similar observations by Hans Georg Dehmelt and co-workers. Other achievements include the first demonstration of a two-photon laser [15] (1981), the quenching of quantum noise (in the difference frequency signal of two laser emission lines) by correlated spontaneous emission (1990),[16][17] stochastic cooling of single ions (1995),[18] the observation of the oscillation dynamics of trapped ions [19] (1998), atomic interferometry on a single ion (1999) [20] and unambiguous evidence of impeded evolution of an unstable quantum system by the system's observation, the Quantum Zeno effect (2000).[21][22]

Toschek’s former students or associates include Bernd Appasamy, Valery Baev, Rainer Blatt, Klaus-Jochen Boller, Philippe Courteille, Jürgen Eschner, Theodor Hänsch, Werner Neuhauser, Ingo Siemers, Ingo Steiner, and Zhang Dao-Zhong.

Awards

In 1990 Peter Toschek received the Robert Wichard Pohl Prize of the German Physical Society (DPG). He has been a member of the Academy of Sciences and Humanities in Hamburg since 1994. In 2002 Toschek became a Fellow of the Optical Society of America (OSA). In 2015 he received the Herbert Walther Award, jointly awarded by DPG and OSA.

gollark: Yes, well, pulseaudio is what I have installed due to firefox.
gollark: Muahahha, I am going to implement PUSH TO TALK using PULSEAUDIO HAX and PYTHON.
gollark: It's one of those things which is too vaguely defined to be *false* exactly, but rather stupid.
gollark: It doesn't seem very meaningful.
gollark: Okay, I kind of understand that sentence but not really? It seems to just be a convoluted way to say "lots of possible things could happen, but in one... universe or something... only a smaller amount of them can, so the weird thing you just encountered is a thing which might have happened but didn't and should be ignored".

References

  1. Maiwald (2020-06-26). "Der FB Physik trauert um einen geschätzten Emeritus-Kollegen" (in German). Universität Hamburg, Fachbereich Physik.
  2. Th. Hänsch; P. Toschek (1966-02-15). "Measurement of neon atomic level parameters by laser differential spectrometry". Physics Letters. 20 (3): 273–275. doi:10.1016/0031-9163(66)90361-1.
  3. Th. Hänsch; P. Toschek (1966-08-01). "Laser differential spectrometry measurement on neon depolarization". Physics Letters. 22 (2): 150–151. doi:10.1016/0031-9163(66)90553-1.
  4. Th. Hänsch; P. Toschek (1968-07-01). "Observation of Saturation Peaks in a He-Ne Laser by Tuned Laser Differential Spectrometry". IEEE Journal of Quantum Electronics. 4 (7): 467–468. doi:10.1109/JQE.1968.1075367.
  5. T. Hansch; A.L. Schawlow; P. Toschek (1972-10-01). "Ultrasensitive response of a CW dye laser to selective extinction". IEEE Journal of Quantum Electronics. 8 (10): 802–804. doi:10.1109/JQE.1972.1076854.
  6. V. M. Baev; T. Latz; P. E. Toschek (1999-09-01). "Laser intracavity absorption spectroscopy". Applied Physics B. 69 (3): 171–202. doi:10.1007/s003400050793.
  7. Th. Hänsch; R. Keil; A. Schabert; Ch. Schmelzer; P. Toschek (1969-06-01). "Interaction of Laser Light Waves by Dynamic Stark Splitting". Zeitschrift für Physik. 226 (3): 293–296. doi:10.1007/BF01392091.
  8. Th. Hänsch; P.E. Toschek (1970-06-01). "Theory of a Three-Level Gas Laser Amplifier". Zeitschrift für Physik. 236 (3): 213–244. doi:10.1007/BF01394503.
  9. W. Krieger; P. E. Toschek (1975-01-01). "Self-induced transparency on the 1.15-μm line of neon". Physical Review A. 11 (1): 276–279. doi:10.1103/PhysRevA.11.276.
  10. W. Neuhauser; M. Hohenstatt; H. Dehmelt; P. Toschek (1978-07-24). "Optical Sideband Cooling of Visible Atom Cloud Confined in Parabolic Well". Physical Review Letters. 41 (4): 233–236. Bibcode:1978PhRvL..41..233N. doi:10.1103/PhysRevLett.41.233.
  11. H. Dehmelt; P. Toschek (1975-01-29). "Proposed visual detection laser spectroscopy on single Ba+ ion". Bulletin of the American Physical Society. 20: 61.
  12. W. Neuhauser; M. Hohenstatt; P. E. Toschek; H. Dehmelt (1980-09-01). "Localized visible Ba+ mono-ion oscillator". Physical Review A. 22 (3): 1137–1140. doi:10.1103/PhysRevA.22.1137.
  13. Deutsches Museum, Das sichtbare Ion
  14. Th. Sauter; W. Neuhauser; R. Blatt; P. E. Toschek (1986-10-06). "Observation of Quantum Jumps". Physical Review Letters. 57 (14): 1696–1698. Bibcode:1986PhRvL..57.1696S. doi:10.1103/PhysRevLett.57.1696.
  15. B. Nikolaus; D. Z. Zhang; P. E. Toschek (1981-07-20). "Two-Photon Laser". Physical Review Letters. 47 (3): 171–173. Bibcode:1981PhRvL..47..171N. doi:10.1103/PhysRevLett.47.171.
  16. Michael P. Winters; John L. Hall; Peter E. Toschek (1990-12-17). "Correlated spontaneous emission in a Zeeman laser". Physical Review Letters. 65 (25): 3116–3119. doi:10.1103/PhysRevLett.65.3116. PMID 10042785.
  17. Ingo Steiner; Peter E. Toschek (1995-06-05). "Quenching Quantum Phase Noise: Correlated Spontaneous Emission versus Phase Locking". Physical Review Letters. 74 (23): 4639–4642. doi:10.1103/PhysRevLett.74.4639. PMID 10058561.
  18. J. Eschner; B. Appasamy; P. E. Toschek (1995-03-27). "Stochastic Cooling of a Trapped Ion by Null Detection of Its Fluorescence". Physical Review Letters. 74 (13): 2435–2438. doi:10.1103/PhysRevLett.74.2435. PMID 10057927.
  19. B. Appasamy; Y. Stalgies; P.E. Toschek (1998-03-30). "Measurement-Induced Vibrational Dynamics of a Trapped Ion". Physical Review Letters. 80 (13): 2805–2808. Bibcode:1998PhRvL..80.2805A. doi:10.1103/PhysRevLett.80.2805.
  20. R. Huesmann; Ch. Balzer; Ph. Courteille; W. Neuhauser; P. E. Toschek (1999-02-22). "Single-Atom Interferometry". Physical Review Letters. 82 (8): 1611–1615. Bibcode:1999PhRvL..82.1611H. doi:10.1103/PhysRevLett.82.1611.
  21. Chr. Balzer; R. Huesmann; W. Neuhauser; P. E. Toschek (2000-06-01). "The quantum Zeno effect – evolution of an atom impeded by measurement". Optics Communications. 180 (1–3): 115–120. arXiv:quant-ph/0105004. Bibcode:2000OptCo.180..115B. doi:10.1016/S0030-4018(00)00716-1.
  22. Gerhard Mack; Sascha Wallentowitz; Peter E. Toschek (2014-07-01). "Decoherence in generalized measurement and the quantum Zeno paradox". Physics Reports. 540 (1): 1–23. doi:10.1016/j.physrep.2014.02.004.

Works

  • With Werner Neuhauser: Einzelne Ionen für die dopplerfreie Spektroskopie. In: Physikalische Blätter 36, Nr. 7, 1980, S. 198–202, doi:10.1002/phbl.19800360714.
  • Das Einzelion — Quantenpräparat und Idealuhr. In: Physikalische Blätter 46, Nr. 7, 1990, S. 213–219, doi:10.1002/phbl.19900460706.
  • Was enthüllt ein beobachtetes Atom seinem Beobachter? Berichte aus den Sitzungen der Joachim Jungius-Gesellschaft der Wissenschaften e.V., Hamburg, Jahrgang 23 (2005), Heft 1. Vandenhoeck & Ruprecht, Göttingen 2005, ISBN 3-525-86329-2
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.