Perpendicular bisector construction of a quadrilateral

In geometry, the perpendicular bisector construction of a quadrilateral is a construction which produces a new quadrilateral from a given quadrilateral using the perpendicular bisectors to the sides of the former quadrilateral. This construction arises naturally in an attempt to find a replacement for the circumcenter of a quadrilateral in the case that is non-cyclic.

Definition of the construction

Suppose that the vertices of the quadrilateral are given by . Let be the perpendicular bisectors of sides respectively. Then their intersections , with subscripts considered modulo 4, form the consequent quadrilateral . The construction is then iterated on to produce and so on.

First iteration of the perpendicular bisector construction

An equivalent construction can be obtained by letting the vertices of be the circumcenters of the 4 triangles formed by selecting combinations of 3 vertices of .

Properties

1. If is not cyclic, then is not degenerate.[1]

2. Quadrilateral is never cyclic.[1] Combining #1 and #2, is always nondegenrate.

3. Quadrilaterals and are homothetic, and in particular, similar.[2] Quadrilaterals and are also homothetic.

3. The perpendicular bisector construction can be reversed via isogonal conjugation.[3] That is, given , it is possible to construct .

4. Let be the angles of . For every , the ratio of areas of and is given by[3]

5. If is convex then the sequence of quadrilaterals converges to the isoptic point of , which is also the isoptic point for every . Similarly, if is concave, then the sequence obtained by reversing the construction converges to the Isoptic Point of the 's.[3]

gollark: As planned.
gollark: Oh, that too, we plan to resurrect 71% of deific entities to make the competition more fun.
gollark: What?
gollark: ubq is to reveal my amazing challenge at 18:00 UTC.
gollark: When it occurs, I mean.

References

  1. J. King, Quadrilaterals formed by perpendicular bisectors, in Geometry Turned On, (ed. J. King), MAA Notes 41, 1997, pp. 29–32.
  2. G. C. Shephard, The perpendicular bisector construction, Geom. Dedicata, 56 (1995) 75–84.
  3. O. Radko and E. Tsukerman, The Perpendicular Bisector Construction, the Isoptic Point and the Simson Line of a Quadrilateral, Forum Geometricorum 12: 161–189 (2012).
  • J. Langr, Problem E1050, Amer. Math. Monthly, 60 (1953) 551.
  • V. V. Prasolov, Plane Geometry Problems, vol. 1 (in Russian), 1991; Problem 6.31.
  • V. V. Prasolov, Problems in Plane and Solid Geometry, vol. 1 (translated by D. Leites), available at http://students.imsa.edu/~tliu/math/planegeo.eps%5B%5D.
  • D. Bennett, Dynamic geometry renews interest in an old problem, in Geometry Turned On, (ed. J. King), MAA Notes 41, 1997, pp. 25–28.
  • J. King, Quadrilaterals formed by perpendicular bisectors, in Geometry Turned On, (ed. J. King), MAA Notes 41, 1997, pp. 29–32.
  • G. C. Shephard, The perpendicular bisector construction, Geom. Dedicata, 56 (1995) 75–84.
  • A. Bogomolny, Quadrilaterals formed by perpendicular bisectors, Interactive Mathematics Miscellany and Puzzles, http://www.cut-the-knot.org/Curriculum/Geometry/PerpBisectQuadri.shtml.
  • B. Grünbaum, On quadrangles derived from quadrangles—Part 3, Geombinatorics 7(1998), 88–94.
  • O. Radko and E. Tsukerman, The Perpendicular Bisector Construction, the Isoptic Point and the Simson Line of a Quadrilateral, Forum Geometricorum 12: 161–189 (2012).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.