Partial k-tree

In graph theory, a partial k-tree is a type of graph, defined either as a subgraph of a k-tree or as a graph with treewidth at most k. Many NP-hard combinatorial problems on graphs are solvable in polynomial time when restricted to the partial k-trees, for bounded values of k.

Graph minors

Forbidden minors for partial 3-trees

For any fixed constant k, the partial k-trees are closed under the operation of graph minors, and therefore, by the Robertson–Seymour theorem, this family can be characterized in terms of a finite set of forbidden minors. The partial 1-trees are exactly the forests, and their single forbidden minor is a triangle. For the partial 2-trees the single forbidden minor is the complete graph on four vertices. However, the number of forbidden minors increases for larger values of k. For partial 3-trees there are four forbidden minors: the complete graph on five vertices, the octahedral graph with six vertices, the eight-vertex Wagner graph, and the pentagonal prism with ten vertices.[1]

Dynamic programming

Many algorithmic problems that are NP-complete for arbitrary graphs may be solved efficiently for partial k-trees by dynamic programming, using the tree decompositions of these graphs.[2]

If a family of graphs has bounded treewidth, then it is a subfamily of the partial k-trees, where k is the bound on the treewidth. Families of graphs with this property include the cactus graphs, pseudoforests, series-parallel graphs, outerplanar graphs, Halin graphs, and Apollonian networks.[1] For instance, the series-parallel graphs are a subfamily of the partial 2-trees, and more strongly a graph is a partial 2-tree if and only if each of its biconnected components is series-parallel.

The control flow graphs arising in the compilation of structured programs also have bounded treewidth, which allows certain tasks such as register allocation to be performed efficiently on them.[3]

Notes

gollark: I may need to replace my phone at some point soon because the battery is degraded horribly and it's not replaceable, and it looks like basically all newish phones, even cheap ones, have trendy but impractical things like non-rectangular screens, non-replaceable batteries, metal cases, and that sort of annoying thing.
gollark: How would you actually make it? It seems to just be some diamonds magically stuck together.
gollark: Hello, other new person.
gollark: Those sound like bees (bad) parents.
gollark: Just learning exactly what's on the next exam/test is intensely bees (bad).

References

  • Arnborg, S.; Proskurowski, A. (1989), "Linear time algorithms for NP-hard problems restricted to partial k-trees", Discrete Applied Mathematics, 23 (1): 11–24, doi:10.1016/0166-218X(89)90031-0.
  • Bern, M. W.; Lawler, E. L.; Wong, A. L. (1987), "Linear-time computation of optimal subgraphs of decomposable graphs", Journal of Algorithms, 8 (2): 216–235, doi:10.1016/0196-6774(87)90039-3.
  • Bodlaender, Hans L. (1988), "Dynamic programming on graphs with bounded treewidth", Proc. 15th International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, 317, Springer-Verlag, pp. 105–118, doi:10.1007/3-540-19488-6_110, ISBN 978-3-540-19488-0.
  • Bodlaender, Hans L. (1998), "A partial k-arboretum of graphs with bounded treewidth", Theoretical Computer Science, 209 (1–2): 1–45, doi:10.1016/S0304-3975(97)00228-4.
  • Thorup, Mikkel (1998), "All structured programs have small tree width and good register allocation", Information and Computation, 142 (2): 159–181, doi:10.1006/inco.1997.2697.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.